Concern over EDF reactor faults

HazardEx, the UK journal covering industrial hazards and regulations worldwide, has published an interesting update on the state of the EPR nuclear reactor being built at Flamanville, in Normandy. Potential problems at this site are of as much concern to UK residents in Southern England, as will be the case over the future reactors of the same type planned for Hinkley Point in Somerset.

HazardEx says:

The French state electricity generator Electricité De France (EDF) has put the cost of repairing recently discovered flaws at the new EPR reactor being built at Flamanville in Normandy at Euro400 million ($468 million). This takes the total cost of the project to Euro10.9 billion, more than three times its original budget.

showimage

The Flamanville plant – an EDF picture

EDF had previously warned that problems with welds at the reactor under construction in Flamanville were worse than first expected. The utility said on July 25 that out of the 148 inspected welds at the latest generation reactor, 33 had quality deficiencies and would need to be repaired.

The most recent projections envisaged the Flamanville 3 reactor loading nuclear fuel at the end of the fourth quarter of 2018, but EDF said this was now scheduled for the fourth quarter of 2019. The reactor was originally scheduled to come on stream in 2012.

Flamanville was the second EPR reactor to be constructed: the first was Olkiluoto in Finland, which has suffered comparable delays and cost overruns, and this is also now due to enter service in 2019.

This means that the first EPR to enter production will probably be at the Taishan nuclear plant in China. Work on Taishan 1 and 2 reactors has also suffered repeated delays, but not on the scale of the French and Finnish plants. At least one of the Chinese reactors is expected to be commissioned this year.

In the UK, there are currently plans to build two of these EPRs at Hinkley Point in Somerset. These reactors could be further delayed if the new problems at Flamanville are not easily resolved. The UK EPRs are already mired in political controversy over the high cost of the project.

ENDS

Advertisements

Process plant safety hazards – and sensors

The following summary of recent hazardous events was the subject of my column in the May 2018 issue of the South African Instrumentation and Control journal, published by technews.co.za . See the whole issue here.

This March saw the North of Europe suffer with the ‘Beast from the East’, with freezing Siberian wind and rain, plus snow – even in the South of the UK. The high winds brought an unexpected benefit: the power generated by the many UK wind turbines reached 14GW, or 34% of the UK power demand, during several periods. The wind power capacity installed feeding the UK grid is now 19GW, the third highest in Europe: Germany has 56GW, and Spain 23GW.

Cyber attacks in the Middle East

The major concerns for Saudi Arabia are the continuing cyber-attacks.  More information is emerging about the Triton malware attack, reported in this column in February. The latest news, published on the Cyberscoop and CyberArk websites, suggest the Triton attacks failed because of a ‘flaw in the coding of the malware’. Because of the sophisticated nature of the malware, and because many of the coding indicators have not been seen before, or used by any known hacking group, the conclusion is still that extensive resources were involved in creating and testing Triton, which could only have been provided by a nation state actor. Saudi Aramco assisted in the investigations, but say the plant attacked by this virus was not a part of their operations. Triton is confirmed to be specifically targeting the Triconex safety override systems, in an overt attempt to cause catastrophic damage. The Schneider Triconex controllers are used in about 18,000 plants around the world, including nuclear and water treatment facilities, oil and gas refineries, and chemical plants. The reports also revealed that attacks in Saudi Arabia using the Shamoon virus have continued, with Sadara Chemicals and the Saudi National Industrialisation Company (Tasnee) both being attacked last year.

USA, the CSB, and Russian hackers

In the USA, the impression is that major plant incidents fall into three main categories: dust explosions, maintenance welding errors and transport pipeline fractures……

[But here it is necessary to update this “impression” after the later announcement from the US administration  – the Dept of Homeland Security recently reported that Russian hackers had been observed on machines (computers) with access to critical control systems at power plants (both nuclear and conventional). American agencies have been aware of these intrusions/attacks for the past 18 months, and they have screenshots showing the hackers had the foothold needed to manipulate or shut down power plants – both in the US and in Europe, it seems….. Plus it is also linked to the suspected Presidential election meddling.] Returning, however, to dust explosions and welding errors….

The US ten year average for grain dust explosions is 9.3, so actually 2017 was below average with only seven explosions and five fatalities in the USA. The number is steadily declining, as better training and housekeeping take effect, and with the wider use of dust explosion venting and suppression systems.

It is my personal impression that maintenance welding errors seem to be a major cause of the plant and tank explosions reported in the USA, firstly during maintenance under hot work permits, but also in plant changes, when working on tanks where flammable materials were previously stored. Despite this apparent laxity in grain handling and petrochemical plant operations, the US has a world leading accident investigation organisation, the Chemical Safety (and Hazard Investigation) Board. The CSB was established in 1998, and produces brilliant accident analysis reports, covering small hazardous events up to major disasters. They are the people that are responsible for detailing the causes of the major BP Texas City refinery explosions in 2005, and the Macondo blowout in 2010, both of which caused major loss of life. The CSB can only make recommendations for legislative changes, which then have to be considered by OHSA and US State legislative bodies. Perhaps typically, President Trump promised to abolish the CSB when he came to office last March, presumably thinking it was a barrier to free enterprise etc, but thankfully he seems to have changed his mind!

Developments in Sensors

Returning to sensors, and the current development trends, it seems there is no specific focus for developments currently. Perhaps because of the US accidents with pipeline leaks and fractures, there is considerable attention being paid to corrosion and crack monitoring, but the development of point sensors seems to not be relevant for long pipelines. At the University of California San Diego, a new ultrasonic sensor array has been built onto a flat silicone elastomer sheet, which can be wrapped round bends and corners that otherwise are difficult to inspect with flat probes. Initial applications are seen on structural steel in bridges, or for aircraft engine supports.

In Europe, ACHEMA has launched their brochures in advance of the 11-15 June expo in Frankfurt: the last event was in 2015. Focussed on process engineering for chemicals, pharmaceuticals and petrochem, maybe ACHEMA will show the future routes of sensor development – notably however, cyber-security and safety from hazards are not major topics in their agenda!

Wireless gas detection total system

Yokogawa has announced that the ProSafe-RS SIL2 Wireless Gas Detection System will be released in September 2017. This will offer a total flammable gas detection system solution, using ISA100 wireless communications, and Yokogawa will include the necessary  consulting and engineering.

The ProSafe-RS SIL2 wireless gas detection system will consist of a newly enhanced version of the Yokogawa ProSafe-RS SIL3 safety instrumented system (R4.03.10), Yokogawa field wireless network devices, annunciator panels, and GasSecure (a subsidiary of Drägerwerk AG) wireless gas detectors GS01 or the GS01-EA (this model is equipped with an extension antenna).

For this system, Yokogawa will establish a total solution that will include both consulting and engineering.

Development Background

In energy and basic materials industries such as oil & gas, petrochemicals and chemicals, a safety instrumented system is employed to safely initiate an emergency plant shutdown when a critical failure is detected, and to initiate the operation of facilities that can extinguish or prevent the spread of a fire.

A field wireless system consists of field devices that are able to communicate wirelessly with a monitoring and control system. Wireless devices have a number of advantages such as allowing installation in difficult-to-access locations and the reduction of installation costs, and they are increasingly seen as essential elements in plant safety solutions. This is a particularly important consideration with gas detection systems, as operation can easily be impacted by factors such as installation location and ambient conditions. And even after system installation, ongoing efforts to optimise its overall configuration may necessitate occasional changes in the location and number of detection devices. The use of wireless technology eliminates the need to worry about wiring and thus greatly facilitates the process of moving and/or installing additional detection devices.

To achieve SIL2 level risk reduction when using wireless gas detectors with a safety instrumented system, communication protocols that comply with the functional safety requirements specified in the IEC 61508 international standard are required. A standard for the functional safety of electrical/electronic/programmable safety-related systems. To meet this need, Yokogawa will provide a SIL2 wireless gas detection system based on a new version of the ProSafe-RS safety instrumented system that will link to field devices using an IEC 61508 compliant communication protocol.

Features of the System

The ProSafe-RS SIL2 wireless gas detection system will consist of a new version of the ProSafe-RS safety instrumented system, R4.03.10, that will be enhanced to add support for an IEC 61508 compliant safety communication technology used in distributed automation; annunciator panels; ISA100 Wireless compliant field wireless devices; and GasSecure GS01 or GS01-EA wireless gas detectors, which are the only devices of this type in the industry that achieve SIL2 risk reduction. The ISA100 Wireless network protocol is based on the ISA100.11a wireless communication standard for industrial automation that was developed by the International Society of Automation (ISA), and the applications necessary for its implementation. This was approved as the IEC 62734 international standard in October 2014.

Total system solution including both consulting and engineering

Through the use of wireless technology, the ProSafe-RS SIL2 wireless gas detection system will allow increased flexibility with the configuration of detection devices, and will be suitable for use as a fire & gas system and emergency shutdown system thanks to its achievement of SIL2 risk reduction. Based on its knowledge of each of this system’s components and its expertise in production control, safety instrumentation, and field wireless engineering and consulting, Yokogawa will be able to offer a total system solution that includes customer support.

Enhanced operating efficiency

On their Yokogawa CENTUM VP integrated production control system screens, operators will be able to easily monitor the operation of the ProSafe-RS SIL2 wireless gas detection system as well as that of any conventional wired gas detection system. Since the GasSecure GS01 or GS01-EA wireless gas detector uses the same faceplate as a wired gas detector, operators will have no trouble identifying any changes in the detector’s status, thus helping to prevent errors that can result from the misinterpretation of information.

 Improved maintenance

With CENTUM VP, operators will have on-screen access to information on the status of all network devices, the charge remaining on the gas detector batteries, and the status of wireless communications, and thus will be able to quickly detect and respond to any abnormality. Thanks to this functionality, more efficient maintenance plans can be drawn up that, for example, will require fewer periodic checks.

yokogawa

About ProSafe-RS

Released in February 2005, the ProSafe-RS safety instrumented system helps prevent accidents by detecting abnormal conditions in plant operations and initiating emergency actions such as a plant shutdown. An independent certification body has certified that ProSafe-RS can be used in SIL3 applications. Unlike conventional safety instrumented systems and distributed control systems, which are regarded as having different roles and functions and operate separately, the operation of ProSafe-RS and the CENTUM integrated control system can be fully integrated. ProSafe-RS is highly regarded by users and has been installed in more than 2,100 projects worldwide (as of June 2017).

Yokogawa’s Commitment to the Field Wireless Business

Yokogawa developed wireless communication technologies for continuous processes that necessitate advanced control and released the world’s first ISA100 Wireless system devices in July 2010, thereby offering its customers a wider range of products to choose from. Currently, Yokogawa offers its customers in the oil & gas, and other industries a wide range of field wireless management stations, field wireless access points, wireless field devices, and wireless adapters for conventional wired devices.

Major Target Markets and Applications

For use in fire and gas systems (FGS) and emergency shutdown systems (ESD) in process industries such as oil, natural gas, petrochemicals, chemicals, pharmaceuticals, electric power, and iron and steel.

Dräger GasSecure

GasSecure AS is a subsidiary of Dräger, and has been a long term partner with Yokogawa in developing the market for wireless gas detectors using ISA100. GasSecure developed, markets and sells the world’s first truly wireless optical gas detector for demanding industrial applications. Representing an evolution in gas detection, the detector is based on innovative ultra-low power MEMS optical technology and has introduced a new level of reliability and flexibility for the detection of gas leaks. The totally wireless detectors increase safety and dramatically reduce costs for the oil & gas, petrochemical, marine, and other process industries. For more information, please visit www.gassecure.com.

Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.

Regular educational reading?

The regular eNewsletter from the UK journal HazardEx should be compulsory reading for any process engineer: it always restores your faith in the incompetence of the human race when doing any project, and confirms that if anything will go wrong, it will do! There must have been someone’s law that said that.

Choose a relevant report to your industry from the fascinating selection in the current January 2017 issue, available from www.hazardexonthenet.net:

  1. A Tesoro Logistics oil pipeline spilled 20,600 barrels of oil back in 2013, at a site near Tioga, North Dakota. Four years later the clean-up is still continuing, and it is likely to go on throughout 2017. Another spill of shale oil was discovered on December 5th by a landowner near Bellfield, North Dakota. There’s a lot of space in North America, but this bit seems to have collected 4200 barrels of oil, apparently from a pipeline owned by Belle Fourche, part of True Companies of Wyoming. The relevant Administration has issued a corrective notice, lets hope that will be completed inside five years!
  2. In Shaanxi province, China, a public toilet in Yulin City exploded on January 1st, killing one person and injuring seven others. Presumably someone lit a cigarette, and ignited an explosive build-up of sewer gas present in the building, which collapsed following the explosion.
  3. An explosion at the Airgas plant near Pensacola, Florida last August unfortunately killed one worker: the explosion destroyed two tankers and a large tank storing nitrous oxide. The unexpected consequence was a country-wide shortage of canned whipped cream and other popular toppings over the Christmas break – obviously much more important to the US public! (These cans use N2O as a propellant and preservative)
  4. The explosion at the GlaxoSmithKline Irvine plant in Scotland in July 2013 injured two employees: SmithKline Beecham Ltd pleaded guilty to H&S failings and was fined £55,000 in court in December 2016.

Yokogawa offers ISA100 vibration sensor

Yokogawa Electric Corporation has announced the development and release of an ISA100 field wireless vibration sensor, which combines a fast data update rate with a long battery life. By providing real-time updates of the vibration levels in plant facilities, the new sensor helps users quickly detect equipment anomalies, enabling predictive maintenance.

Development background

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Vibration sensors are used for the condition monitoring and predictive maintenance of plant machinery such as compressors, pumps, and motors. Conventional methods for monitoring vibration include the use of vibration sensors that rely on wired communications with a host system, supplemented by patrols by maintenance staff to collect vibration data. Wireless vibration sensors offer the same capabilities, with a much reduced installation cost and improved versatility: plus with the increasing adoption of ISA100 wireless technology across process plants, these sensors are a simple addition to such standard systems.

Since releasing the world’s first ISA100 Wireless-based field wireless devices and wireless systems, Yokogawa has expanded its line-up of field wireless devices that measure temperature, pressure, flow rate, and the like. This new vibration sensor will meet the  customer requirement for a device that can provide the fast updates on vibration levels needed to detect anomalies at an early stage.

Product features

ISA100 Wireless is a technology that is based on the ISA100.11a standard. It includes ISA100.11a-2011 communications, an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

The principal components of this field wireless vibration sensor are the FN510 field wireless multifunction module, the LN01 piezoelectric type acceleration sensor, and the FN110 field wireless communication module. Via a gateway device, the FN510 uses the ISA100 Wireless communications protocol to exchange data with a host-level system such as the existing plant DCS. The data collected with this vibration sensor enables plant operators and maintenance staff to monitor vibration levels in real time. Both standard industrial and explosion-proof/intrinsically safe sensor types are available, with approvals to FM, CSA (cFM), ATEX and IECEx.

yokogawa-isa100-wirelesstm-based-field-wireless-vibration-sensor

The LN01 sensor is the small item at the bottom of the picture, presumably! The box provides the plant mounted protection for the FN510

The LN01 sensor monitors vibration in the frequency range 10Hz to 10kHz, with an update rate of 10 seconds minimum. Measurements are provided of vibration velocity up to 160mm/sec (6″/ sec), and acceleration up to 300m/sec(1 ft/sec/sec). On site the sensor has a cable connection to the FN510 free-standing field wireless multifunction module, the cable is typically up to 10m long. Battery life can be as long as 10 years, if the update rate is set at once per minute.

The Yokogawa approach to field wireless sensors

Yokogawa says they will continue to expand their lineup of ISA100 Wireless transmitters and other devices such as adaptors to develop best-in-class solutions that provide higher value to customers, and promote the use of field wireless technologies.

Their current ISA100 presentation includes their own pressure, temperature and flow sensors, plus other sensors from third parties, for example the Draeger GasSecure flammable gas detector, and the Spirax Sarco STAPS steam trap monitoring system. They have also previously featured products from the Bently Nevada vibration monitoring systems, which also use ISA100 wireless communications: the ISA100 system does permit the frequency spectrum from such devices to be transmitted to dedicated monitoring analysers. The Yokogawa development of the LN01 accelerometer sensor will effectively complement such systems.

(c) ProcessingTalk.info

30 years on, and Chernobyl is covered

There are many old physicists who would remember the day of the Chernobyl accident back in 1986. I remember the hairs on the back of my neck standing on end, when driving home and hearing that the radiation detectors on the Swedish (or maybe Finnish?) nuclear reactor power stations had gone into alarm, because of the incoming radiation fall-out detected.

Then there were the radio-active reindeer, after eating the moss on rocks in Scandinavia, and worse still, Welsh lamb with green dye marks to indicate ‘unfit for human consumption’. Working on a lot of development projects for sensors to be used in the BNFL Sellafield site, it was interesting to see how sheep with green dye marks seemed to be collected and placed in the fields near that site…… nothing if not a subtle comment by the local farmers.

European Reconstruction

The latest news this last month was that the “Chernobyl Arch”, a containment structure designed to enclose the damaged reactor and upgrade the site finally into an environmentally safe and secure state, was moved into position in November. The structure was built on site as part of an international programme, led by the European Bank for Reconstruction and Development (EBRD), and moved to its final position along a 327 meter track, to cover the previous makeshift shelter placed over the exposed core soon after 1986. No mean feat with a weight of 36,000 tonnes. A video of the move and installation is visible on http://www.ebrd.com/news/video/timelapse-video-of-chernobyl-arch-sliding.html

26447282122_0a4509e597_k

The constructors

EBRD advise that the structure was built by Novarka, a consortium of the French construction firms VINCI Construction and Bouygues Construction. Work started in 2010, and the cost was Euro 1.5Bn. The arch itself is the largest moveable land-based structure ever built, with a span of 257 metres, length of 162 metres, height of 108 metres. With the sealed installation due for completion by November 2017, it will make the accident site safe, with a lifetime of 100 years; allow for the eventual dismantling of the makeshift Russian built 1986 shelter, and allow the management of the radioactive waste inside. (All assuming no local conflicts blow the place up!)

30858008932_0da3f19d96_k

EBRD manages the Chernobyl Shelter Fund, and is the major contributor to the Euro 2.1Bn programme: more than Euro 1.5 billion has been contributed from 45 donors to date. This is presumably a good example of International and European co-operation and common sense. With Euro 600m still required, one hopes that the neighbouring countries affected can spare a little more? Chernobyl is in the Ukraine, but the original reactor was of Russian design.

A personal opinion is that this is the sort of project that European and International co-operation should be all about, and being one major build, it probably has not resulted in excessive syphoning off of the funds into dubious pockets!

30225392714_8d6fe2a676_k

PS: I’m also old enough to remember the expressions on the faces of my Mum and Dad when they heard that John Kennedy had been assassinated!