ABB automation increases capacity 10x for Tate & Lyle food additive plant

When Tate & Lyle acquired Biovelop, a Swedish manufacturer of oat based food ingredients in 2013, the factory in Kimstad, Sweden was modernized and expanded by installing automation systems, variable speed drives, motors, motor control cabinets  and valve positioners from ABB Automation. In 2016 the remodeled plant celebrated the first anniversary of operations with the new systems and significantly increased production capacity.

The global market for specialty food ingredients, including health and wellness products, is growing, with annual sales of $51 billion and annual growth rate of 4-5%. Oat ingredients have been actively involved with this trend as they offer some key nutritional and functional benefits. In particular, oat contains beta glucan, a soluble fiber that has been shown to lower cholesterol and reduce post prandial glycaemic response – claims that have been approved by the European Food Safety Authority (EFSA). In fact, it was these properties of the grain that made the sector an attractive one to Tate & Lyle, and triggered the decision to diversify its portfolio into this sector.

“We have seen a more than tenfold increase in capacity with the same number of shift operators compared to four years ago,” said Annika Werneman, Tate & Lyle plant manager. “It’s a huge change in such a short time, and it means that we’ve gone from a low-level facility to one that can deliver high quality product to our customers globally.”

Advanced automation technologies in the plant run critical food processing equipment -including pumps and decanters: material handling machinery is also used to transport the dry food products. ABB delivered automation equipment that included 85 variable speed drives (VSDs), with power ratings ranging from 0.37 kW to 55 kW, as well as ABB MNS 3.0 motor control cabinets and low voltage motors. ABB also delivered 44 Digital Electro pneumatic positioners (TZID-C) , which use the Hart protocol to communicate with the control valves.

“We needed a process that was highly automated and could run 24 hours, seven days a week, all year long,” Werneman continued. This meant building a system that enabled Tate & Lyle engineers to digitally interact with the system, commission (start) devices, and diagnose performance deviations or failures from anywhere in the world. This not only helps ensure operational consistency, but also reduce the total cost of ownership by enabling staff to manage the processes without being physically present at each site.

Such interactivity was enabled by the ABB fieldbus automation for the drive controls, providing flexibility as well as remote monitoring of the plant performance. “I like that ABB designed the system so that the fieldbus responsible for device control is split from the fieldbus used for asset management,” explained Leo Dijkstra, power & controls team leader Europe at Tate & Lyle. “This ensures that I can make any changes to the configuration of the devices without the risk of the whole network going down.”

At Tate & Lyle, they place great importance not just on what they do, but how they do it. “We are working continuously wherever we can to reduce the environmental footprint of our operations,” said Dijkstra. ABB was well placed to help as it has developed a portfolio of products and solutions that improve industrial energy efficiency.

“In our pump applications alone, we are using up to 50 percent less energy thanks to the variable speed drives, and these have been running non-stop for the last two years without a single failure,” Dijkstra continued. “What’s more, ABB was so quick to deliver products that we even had the first VSD delivered in just a few days.”

Although the nearest ABB support is only a ten-minute drive away from the Kimstad factory, the fieldbus flexibilities in the drives enable Tate & Lyle to rely on its own staff to handle the ABB equipment remotely. “Our work with Tate & Lyle illustrates the benefits of digitization, which can yield immense productivity and output gains from existing facilities,” said Petter Hollertz, area sales manager at ABB. “The improvements at this plant also show what great teamwork between the equipment supplier and the user can accomplish, as we worked together as true partners on this project.”

UV keeps bottled water safe

Hanovia UV has supplied Cott Beverages UK, based in Derby, with a PureLine intelligent UV system to keep its production process water pure.

PureLine range

In an increasingly regulated and safety-conscious market, legislation such as the EU Directive for Bottled Water 98/88/EC (1998) drives the beverage industry to meet ever more stringent standards of quality. Microbial growth due to contaminated water or ingredients can cause discolouration, off flavours and shortened shelf-life. The threat of contamination is further increased as manufacturers respond to demands for less chemical additives and preservatives. Effective microbial disinfection of the whole process is therefore essential.

To meet this requirement, Cott Beverages has been using Hanovia UV disinfection technology to treat process water used in the production process. The company decided to use UV technology to ensure final product security prior to mixing and bottling and has been very satisfied with the performance of the UV systems.

“The Hanovia UV systems have been easy to integrate, maintain and operate,” said Chris Prentice, site service engineer at Cott Beverages. “They provide us with absolute insurance before bottling by making sure that we are producing and maintaining a high-quality product, which is essential for our brand.”

PureLine UV from Hanovia is an intelligent system that is optimised for the beverage industry to simplify the treatment of water, sugar syrup, brine and even reducing chlorine and ozone. Critically, there are no microorganisms known to be resistant to UV – this includes pathogenic bacteria such as listeria, legionella and cryptosporidium (and its spores, which are resistant to chlorination). Unlike chemical treatment, UV does not introduce toxins or residues into process water and does not alter the chemical composition, taste, odour or pH of the fluid being disinfected.

UV is used for both primary disinfection or as a back-up for other purification methods such as carbon filtration, reverse osmosis or pasteurisation. Because UV has no residual effect, the best position for a treatment system is immediately prior to the point of use. This ensures incoming microbiological contaminants are destroyed and there is a minimal chance of post-treatment contamination.

UV disinfection systems are easy to install, with minimum disruption to the plant. They need very little maintenance, the only requirement being the replacement of the UV lamps every 9-12 months, depending on use. This is a simple operation that takes only a few minutes and can be carried out by trained general maintenance staff. The Hanovia UVCare training programme supports businesses like Cott Beverages to make sure servicing is carried out by certified engineers at all UK production sites.

The value of Specialist Automation Suppliers

Engineers around the world are looking at how to benefit from the various solutions to the IIOT on offer: the article posted on 2 February entitled “How DCS Vendors see their IIOT future” covered the approaches being adopted by some of the major DCS vendors. This follow-up article, written for and first published in South Africa, in the Technews South African Instrumentation & Control Journal, March 2017, covers the approach of some of the smaller, specialist suppliers to their own selected sectors of the process industries.

While the major DCS suppliers try to work out how to provide revenue earning services from the growth of the IIOT, there are many specialist engineering product and systems suppliers who are investing in making their products easier for engineers to use in networks, and operate within the IIOT.

Most of these specialists are primarily focussed on the production of their valves, sensors, controllers or drives: this is their business – and they need their products to work with any interface the customer requires. Their expertise in interfacing their own products is the best available, they have an in-house systems knowledge base and capability. Most now offer this capability to their would-be product users as a service – offering a custom designed system incorporating the products. So look to these suppliers to offer the best engineering at an economic price, within their specialist field.

Typically these single-minded companies were set up by a design engineer with a good original product idea, and this has been developed and refined over the years. Often the company is family owned – and engineering / R&D investment takes precedence over profit distribution. Some such companies still exist in the USA, and a few in the UK, like JCB and Rolls Royce. Several specialist engineering product examples are found in suppliers originating from Germany, Scandinavia and middle Europe, where the culture seems to have encouraged their survival.

Beckhoff Automation

Arnold Beckhoff started his company in 1953: Beckhoff Automation now has a turnover of Euro 620 million, and employs 3350 people. The company implements open automation systems based on PC control technology, scalable from high performance Industrial PCs to mini PLCs, I/O and fieldbus components, plus drive technology and automation software. Supplying systems to many industries, Beckhoff works with and supplies components for over 15 major fieldbus systems. Motion control solutions solve single and multiple axis positioning tasks, and their servomotors offer combined power and feedback over a standard motor cable.

The Beckhoff TwinCAT 3 engineering and control automation software integrates real-time control with PLC, NC and CNC functions in a single package, and then all Beckhoff controllers are programmed using TwinCAT in accordance with IEC 61131-3. While the built-in TwinCAT condition monitoring libraries allow the on-site controllers to monitor the status of the sensors, to reduce downtime and maintenance costs, it also allows wider comparisons with connections to such cloud services as Microsoft Azure or Amazon Web Services. Other data connections are available, for example a smartphone app enables immediate local and mobile display of a machine‘s alarm and status messages.

Bürkert Fluid Control Systems

Bürkert was founded in 1946 by Christian Bürkert: it now has sales of Euro 412 million and employs over 2500 people. The product base is gas and liquid control valves, systems for measuring and controlling gases and liquids, plus sensors for monitoring such fluids, extending to complete automation solutions and fluid systems – this capability is known as their ‘Systemhaus’. While their products are now applied across many industries, their particular specialisations have been in sanitary, sterile and hygienic applications (food, beverage, biotech and pharmaceuticals), micro applications (medical, inkjet and beverage mixing/vending), and water treatment industries.

From the UK operation, Bürkert provide locally engineered solutions and systems for their pharma, food and brewery customers in particular. Locally made craft beers are a major growth area in the UK, and most start small, with no real automation. One example was Stroud Brewery, who needed to expand production by a factor of 5x, and preferably not increase their staff numbers: Bürkert designed a PLC system and intelligent control panel, which automated the temperature control of the cold and hot liquor tanks, and in the mash pan. In addition a system for controlling the run-off rate from the mash tun simply uses three separate Bürkert level sensors.

Bürkert also have developed their own ‘Device Cloud’, they call this ‘mySITE’. This collects data from Bürkert sensors around the world, using an on-site interface known as mxConnect – which can also accept data inputs from other sensors.

National Instruments

National Instruments was only started in 1976, in the USA, by Dr James Truchard and a colleague, who are still involved in the business. Now sales are $1320 million, and they have 7400 employees worldwide. Their declared Mission is to “equip scientists and engineers with systems that accelerate productivity, innovation, and discovery” – and their focus has always been to supply research establishments and engineers with open, software-centric platforms with modular, expandable hardware. This gives its own logistics problems, with 35,000 customers served annually.

It is difficult for me, as an outside observer, to relate the NI systems to an oil refinery or chemical plant application: but it comes into its own when the data handling grows in complexity – for example in pharmaceutical and biotech applications, and the sort of plants where engineers have a major input in monitoring the application. Mention cyclotron or Tokomak, CERN or the Large Hadron Collider, and NI and its LabView are embedded in their engineering control systems. All 108 collimators on the LHC are position controlled using LabView.

National Grid UK, which controls the distribution and transmission of electric power round the country, has adopted a control system based on the NI CompactRIO for the whole network. With many new power generating sources, HVDC connections, variable inputs from solar and wind farms, and the phasing out of major fossil fuelled plants, National Grid found that traditional measurement systems did not offer adequate coverage or response speed to handle these new challenges and risks. They adopted a platform, based on the CompactRIO, to provide more measurements – and also adapt with the evolving grid for generations to come. This interconnected network includes 136 systems, with 110 permanently installed in substations throughout England and Wales and 26 portable units that provide on-the-go spot coverage as needed.  The associated software systems provide their engineers with customized measurement solutions that can be upgraded in the future as new grid modernization challenges arise.

In terms of IoT developments, NI has just opened an Industrial IoT lab at the NI Austin HQ in the USA, to focus on intelligent systems that connect operational technology, information technology and the companies working on these systems. Many other companies are co-operating in this venture, like Cisco and SparkCognition, and the lab intends to foster such collaboration to improve overall interoperability. In addition NI has partnered with IBM and SparkCognition to collaborate on a condition monitoring and predictive maintenance testbed: this will use the SparkCognition cognitive analytics to proactively avoid unplanned equipment fatigue and failure of critical assets.

(c) Nick Denbow 2017

Fresh air with Brexit @ProcessingTalk

Having been a silent voter during the run up to the referendum, and appalled by the rubbish pedalled by the Politicians on both sides, I was delighted to discover that despite my reservations about leaving the EU, a small majority of the voting population also agreed that the positive aspects of a Brexit outweighed some inevitable early problems.

Why is there so much worry over the UK from my overseas friends and relations? The UK is one of the original trading nations, dating back to the C15th. The world is now a much smaller place, and all nations seek to trade worldwide. No countries or group of countries put up trading barriers (or walls) to stop trade, so business between the EU and the UK across the board will continue. They would lose more business than we would, by ceasing to carry existing business forwards. Plus all the recent growth in UK exports has come from trade with non-EU countries.

Forty years ago, the Politicians suggested joining the Common market would be great, citing cheap wine etc. Just another bad promise I’m afraid. Plus we joined the Common Market, not the EU, a Federation of States whose unelected bosses dictate that cucumbers and bananas shall be straight, and set the minimum size of strawberries to exclude the better English (and Scottish) ones. My niece asked where I would get my supplies of wine – so I mentioned that we drink only Australian and NZ wine, the wine sold expensively in the UK from France is actually the cheap stuff they would not drink themselves, and presumably normally turn into vinegar.

The French describe the British as a nation of shopkeepers. It is true, but I say we are a nation of independent-minded traders, sometimes also called entrepreneurs.

What about Automation

In the UK, there will be a slowdown of investment, and this will hit what little domestic spend there was on process automation. It is in the food industry where automation is needed most, and the suppliers there are surely used to an unwillingness to invest. Other sensors go into machinery that is exported, and some of that will suffer with a turndown in EU trade. The oil industry is not really investing at the moment, but the lower GBP/USD rate might make our oil industry, with its experience, and our costs more competitive in overseas contracts.

Siemens, who were publicly very much against a Brexit, has announced it will put on hold any further investment in its wind turbine manufacturing plant in Hull, where it has just set up a new factory employing 1000 people, at a cost of GBP310m. Hull voted by one of the largest majorities FOR Brexit. Dong Energy, the biggest investor in UK wind power, said “we don’t believe that UK energy policy is dependent on EU membership”. Maybe the UK can impose a trade barrier that stops Areva sending their reactor to Hinkley Point: already a UK Government advisor has suggested the GBP18Bn investment by EDF would be cancelled by the French. Maybe then we could go for a sensible UK/US solution?

From an editor’s point of view, press releases about major onshore automation investment projects in the EU, by British suppliers, have been very thin on the ground for several years. So what is at risk with a Brexit anyway? For the big multinationals, they deal with these contracts through their local subsidiaries, wherever the work or engineering is carried out. Most project descriptions these days mention interlinked CAD systems using resources from 5 or 6 design centres all around the world, and the work flows electronically through country borders. From India to Aberdeen, Houston, Madrid, Romania, Italy, UK and Egypt. So what will change? The Brexit might subtly boost the likelihood of investment projects in Eire, rather than the UK, which would be good news for Ireland.

Changes to expect

Probably the people feeling the pinch most will be the City Traders and the Banks. The pound will settle to a lower level, enabling us to recover faster, and then it will climb back when compared to the Euro, if not the Dollar. Whether there will be any further effects on the EU, I cannot predict. There is very little likelihood of Scotland or Northern Ireland breaking away from the UK and joining the EU separately (but the last time I said something similar to this, it was to say that “clamp-on ultrasonic flowmeters would never be able to measure steam or gas flow” – judge for yourself).

What I would like to see is an end to the extreme contrast between the lowest and the highest salaries in the UK, possibly starting by eliminating those highly paid banking jobs. Already HSBC is relocating their Euro currency trading operation to Paris. Maybe this will put a lid on the property prices in London, and overseas billionaires will sell their empty apartments. At least we will now stop paying high salaries and higher travel expenses to the ineffectively employed UK MEPs (Members of the European Parliament)!

For another viewpoint….

For a different viewpoint, see Eoin O’Riain’s post on his Read-out.net Instrumentation Signpost blog: https://instrumentsignpost.wordpress.com/2016/06/30/nobody-knows-brexit-pauto-tandm/

Nick Denbow

http://www.Processingtalk.info

Food & Pharmaceutical Futures

‘Food & Pharmaceutical Futures’ was the title of an ISA Symposium held in Cork, Ireland in March 2016, the first ISA Food and Pharmaceutical Symposium to be held outside North America. Eoin O’Riain reported on the event, which was a major success, in his magazine Read-out.net, and also on-line: his webpage reference is bit.ly/1odd6cZ

Most of his report is re-presented here, as follows:

From the time it was first mooted for Ireland in 2015 the planning for the 3rd ISA Food & Pharmaceutical Symposium was embraced with enthusiasm by the local Ireland Section. This was in Philadelphia early in 2015  and since then the ISA’s Food & Pharma Division under the able directorship of Canadian Andre Michel has ploughed forward, overcoming setbacks and the not inconsiderable distances between North America and the capital of Munster. Chair of the symposium and former Ireland Section President, Dave O’Brien directed a strong committee charged with ensuring that this – the first such international symposium organised by the ISA outside North America – would be a resounding success.

And it was.

Venues were assessed, speakers recruited and the various minutiae associated with organising an international event were discussed, duties assigned and problems solved over many late night transatlantic telephone conferences. Using the experience of the ISA staff in North Carolina and the many years of experience in organising table-top events and conferences in Ireland by the Ireland Section a very creditable event was staged at the Rochestown Park Hotel. With some justification the Symposium Chair could state before the event started “We have assembled a truly outstanding program this year, featuring some of the world’s most accomplished experts in serialization, process optimization, cyber security and alarm management to name a few. These experts will speak on the vital issues affecting food and drug manufacturers and distributors. We are delighted to have the opportunity to bring this event to Ireland for its first time outside of the United States!”

Indeed upwards of 200 registrands agreed with this view and attended the two day event: a turnout that nearly doubled the attendance at last year’s event in Philadelphia USA. Plus it was noticeable that the bulk of the delegates stayed right up to the completion of the final sessions.

112

Technology and Innovation for 2020 Global Demands

Two fluent keynote speakersPaul McKenzie, Senior Vice President, Global Biologics Manufacturing & Technical Operations at Biogen (who addressed “Driving Change Thru Innovation & Standards”) and Dr Peter Martin, VP and Edison Master, Schneider Electric Company (Innovation and a Future Perspective on Automation and Control) may be said to have set the tone. The event was also graced with the presence of ISA International President for 2016 Mr Jim Keaveney.

The technical programme featured 40 presentations, delivered by 33 experts in their fields: a few of the session highlights were as follows:

Serialization

The important subject of serialization which affects all level of the pharmaceutical business especially in view of deadlines in the USA and the EU. From an overview of the need and the technology to a deep dive into the user requirements, this session provided the latest information on the world requirements and helping provide the solution needed in each facility. Speakers, as in most sessions, were drawn from standard, vendor and user organisations as well as state enforcement agencies.

Track & Trace

In the parallel Food thread of the symposium the rôle of track and trace technologies were examined. Product safety, output quality, variability and uniqueness of customer requirements manufacturers are facing increasing demands on the traceability of raw materials, real-time status of manufactured goods and tracking genealogy of products throughout the value chain from single line to the multiple sites of global manufacturers. The evolution of data systems and technologies being offered means greater benefits for Industry and presenters Vision ID and Crest will show these solutions and the advantage of modernization.

116Both conference threads came together for much of the event mirroring the similarity of many of the technologies and requirements of each sector.

Digitalization

Digitalization in industry shows what bringing the worlds of automation and digitalization together provides true and advanced paperless manufacturing with more complex devices and interconnected data systems. This is an enabler to integrated operations within industry. Using MES as a core concept to create a Digital Plant and optimized solutions with data driven services was explained. And a practical example of a plant was discussed showing the journey to paperless manufacturing and a real pharmaceutical strategy of integrating automated and manual operations.

Cybersecurity

Of course this is one of the key topics in automation in this day and age. Without implementing the proper preventative measures, an industrial cyber-attack can contribute to equipment failure, production loss or regulatory violations, with possible negative impacts on the environment or public welfare. Incidents of attacks on these critical network infrastructure and control systems highlight vulnerabilities in the essential infrastructure of society, such as the smart grid, which may become more of a focus for cybercriminals in the future. As well as threats from external sources steps ought to be taken to protect control and automation systems from internal threats which can cripple a company for days or months. This session highlighted the nature of these threats, how systems and infrastructure can be protected, and methods to minimize attacks on businesses.

Automation Challenges for a Greenfield Biotech Facility

114

Networking in the coffee break

These were outlined in this session in the pharmaceutical thread. Recent advances in biotechnology are helping prepare for society’s most pressing challenges. As a result, the biotech industry has seen extensive growth and considerable investment over the last number of years. Automation of Biotech plants has become increasingly important and is seen as a key differentiator for modern biotech facilities. Repeatable, data rich and reliable operations are an expectation in bringing products to market faster, monitor and predict performance and ensure right first time delivery. This session provided the most topical trends in automation of biotech facilities and demonstrated how current best practices make the difference and deliver greater value to businesses.

Process Optimization and Rationalization

Meanwhile in the Food & Beverage thread incremental automation improvement keeps competitiveness strong. Corporate control system standardization leads to constant demand for increases in production and quality.

Industry 4.0 (Digital Factory: Automate to Survive)

The fourth industrial revolution is happening! This session asked how Global Industry and Ireland are positioned. What did this mean to Manufacturer’s and Industry as a whole? The use of data-driven technologies, the Internet of things (IoT) and Cyber-Physical Systems all integrate intelligently in a modern manufacturing facility. Enterprise Ireland and the IDA headlined this topic along with the ICMR (Irish Centre for Manufacturing Research) and vendors Rockwell and Siemens.

OEE and Automation Life-cycle

Worldwide today many of the over 60 Billion Euro spend in installed control systems are reaching the end of their useful life. However, some of these controls, operational since the 80’s and 90’s, invested significantly in developing their intellectual property and much of what was good then is still good now. Of course some aspects still need to evolve with the times. This requires funding, time and talent. For quite some time now there has been a skilled automation shortage at many companies leading organizations to outsourcing, partnerships and collaboration with SME’s to help manage the institutional knowledge of their installed control systems.

115

Further networking

With corporate leadership sensitive to return to shareholders, plant renovation approval hurdle rates are usually high when it comes to refreshing these control systems. In many manufacturing facilities, engineers and production managers have been asked to cut costs and yet still advance productivity. To solve this dilemma, many world class facilities continue to focus on driving improvements through the use of automation and information technology. Some are finding that using existing assets in conjunction with focused enhancement efforts can take advantage of both worlds. Here we were shown great examples of where innovation and such experiences are helping to create real value for automation modernization.

Alarm management

And of course no matter how sophisticated systems are Alarms are always require and necessary. DCSs, SCADA systems, PLCs, or Safety Systems use alarms. Ineffective alarm management systems are contributing factors to many major process accidents and so this was an important session to end the symposium.

The social aspect of this event was not forgotten, and following a wine reception there was an evening of networking, with music, at the end of the first day.

Training Courses

113

Eric Cosman in full flow

On the Wednesday, although the symposium itself was finished there were two formal all day training courses.

  1. Introduction to Industrial Automation Security and the ANSI/ISA-62443 Standards (IC32C – Leader Eric Cosman, OIT Concepts ).
  2. Introduction to the Management of Alarm Systems (IC39C – Leader Nick Sands, DuP0nt).

These, and other, ISA courses are regularly held in North America and the Ireland Section occasionally arranges for them in Ireland.

In Summary

Andre Michel, ISA FPID Director, and President of Efficient Plant Inc, summed up the impressions left by this first such ISA conference outside North America: “This was truly an internationally focused event because it tackled the significant issues and trends in automation affecting the food and pharmaceutical industries on a global scale.”

All in all the Ireland Section and its members may feel very proud in looking back on a very well organised and informative event which in an email from one of the attendees, “Thank you all, It was the best symposium I attended in the last 10 years!”