Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.

Remaining Useful Life analysis via the Senseye cloud @ProcessingTalk #PAuto

Senseye, the Uptime-as-a-Service specialists, has launched a new version  of its automatic condition monitoring and prognostics software, which offers their ‘Remaining Useful Life’ calculations to all customers – whether they operate 10 or 10,000 assets. Senseye is unique in offering automated condition monitoring combined with Remaining Useful Life analysis.

Knowing the Remaining Useful Life of machinery helps their industrial clients to implement cost-effective predictive maintenance, typically leading to a 10-40% reduction in maintenance costs and a parallel downtime reduction of 30-50%. The software has already been adopted by a major automotive OEM, helping them to avoid their downtime cost – which is over $2m per hour.

Up until now, the Remaining Useful Life measurement has been an academic focus, accessible only to those with extensive data engineering skills.  The patent-pending Senseye technology makes it accessible to all. The automated analysis is designed to be easy to use by maintenance teams and managers and is backed by Senseye’s extensive background in condition monitoring, based on experience in the highly competitive aerospace and defence industries.

Robert Russell, Senseye CTO commented: “Being able to see the Remaining Useful Life of machinery – without requiring expert input – empowers site maintenance engineers to get maximum value from their condition monitoring solutions”.

Trusted by a number of Fortune 100 companies, Senseye offers a leading cloud-based condition monitoring and prognostics product. Their award-winning solutions are usable from day one and available as a simple subscription service, enabling customers to rapidly expand their predictive maintenance programs.

Noise mapping offshore using wireless sensors

Many of the latest technology developments in relation to offshore oil and gas production installations have emerged from Norwegian research studies, because that industry represents the major part of the economy in Norway.  Such research studies do not only relate to better and more efficient methods of working, but they also investigate the health and safety aspects of the industry: an area of particular concern has been hearing damage to workers offshore, which is the predominant cause of work related illness. At the Yokogawa User Group meeting held in Budapest in May 2016, Simon Carlsen of Statoil ASA in Norway explained the background to a recent project that was undertaken to improve the efficiency of the noise surveillance and monitoring systems Statoil use offshore. This was also presented to a Society of Petroleum Engineers International conference on Health and Safety in Stavanger in April (Ref 1).

picture-3-from-pdf

The main Health & Safety tool used for monitoring noise exposure is the ‘Noise map’, which provides noise level contours within rooms and around machinery where workers are active. These are used to establish a course of action where noise levels exceed allowed limits, whether this action is to reduce or remove the noise source (if possible), insulate the area, issue PPE to workers, and/or impose working time restrictions. Noise maps have historically been based on manual surveys that take single point readings, which are then plotted onto a site map, typically from CAD drawings. Manually taking and plotting these measurements is arduous and time consuming, and typically would be updated only on around a four year cycle. Plus the readings are (obviously) not continuous, only record the conditions when each reading was taken, and generally do not record the added effects from workers using different machinery and tools in the area.

Statoil R&D on wireless & noise instrumentation

Simon Carlsen of Statoil joined the R&D Department in 2006, bringing expertise in wireless instrumentation, and started investigating the feasibility of using wireless sensors and software techniques to create a real-time noise map. The system subsequently commenced became known as WiNoS, for “Wireless Noise Surveillance”, when formally initialised in 2013. This will consist of a network of wireless noise sensors, continuously monitoring the noise in the process area, using sound pressure level (SPL) measurements of four types: A-weighted SPL (I.eqA), C-weighted SPL (I.eqC), peak SPL (I.peak) and thirty one separate third-of-an-octave frequency band measurements from 25Hz to 16kHz. This data is much more comprehensive than the simple noise level measurements used to establish the noise maps, but will superimpose this data onto the historically available maps. These readings can then be used to update the map in real time, and create alarms available to operators.

The WiNoS sensors then use an industry standard wireless network infrastructure, which transmits the data into the control system, where special software produces the updates to the noise maps – typically on a one minute update rate (ie almost continuous). This live information can be used to create alarms to report back to workers in the area, to control their noise exposure. The objective is to reduce work-related hearing damage, by knowing the actual on-site conditions; to optimize operator time working on/near tools, to reduce daily exposure; and to provide instant feedback on the effect of noise reduction measures. In addition WiNoS allows for time synchronized measurements amongst the sensors in the network, and also allows the control room operator to trigger a download of a high resolution frequency spectrum waveform from any sensor of particular interest, to analyse the signature of the noise. This latter is a major part of the future development of the monitoring system, which will feed into plant condition and process performance monitoring studies.

noise-map-3

The WiNoS project development employed the expertise of the Norwegian companies Norsonic AS in the microphone design and the sound level measurements, and the Department of Acoustics at the research company SINTEF to develop the PC software that records the data and creates the noise maps. The software was also required to conform to the Statoil qualified communications protocol.

Choice of wireless network

A major part of the research feasibility study that preceded the WiNoS project was devoted to the choice of the wireless network to be used to efficiently and reliably transmit the data, relatively continuously from multiple sensors. The two suitable networks that were emerging at that time were WirelessHART and ISA100.

The WirelessHART system is now well-known and fairly widely used in Statoil facilities, but the early research trials showed mixed experience with the system and the relevant vendors – some of this was related to the lack of specification details written into the WirelessHART standard. But there were also challenges with achieving the power efficiency in the transfer of all the data required, and the requested large data transfer of the high-res waveform was not readily achievable.

The ISA100.11a wireless transmission standard was also in use in Statoil, and had been adopted for the wireless flammable gas detector pioneered by GasSecure in Norway – Statoil had been involved with the prototype field trials offshore. The initial trials on ISA100 equipment from Yokogawa provided high flexibility for the different application demands, allowed all the 31 one third octave values to be packed into one transmission telegram, and allowed a well-defined block transfer. The sensor could also achieve the two year life required from the installed battery pack, at the 1 minute update rate.

The decision was made that ISA100.11a was to be the preferred protocol for WiNoS, from a technical and project model perspective. Based on the earlier experience of development co-operation with Statoil, it was decided to invite Yokogawa to join the WiNoS project as a Co-Innovation partner, a role that they were keen to develop. In addition to providing the ISA100.11a wireless interface electronics for the sensor, and the interface into the third party control system, Yokogawa worked with Norsonic to develop the mechanical housing for the microphone sensor, and the electronic hardware to process the sound measurements using the Norsonic software, with the whole sensor assembly meeting ATEX requirements.

yta510iaeueth-xx

A Yokogawa wireless temperature transmitter adapted to include the Norsonic microphone

Full system test

In March 2016, a network of 7 off Yokogawa ISA100 enabled wireless noise sensors were tested within the (land-based) industrial lab hall at Statoil Rotvoll, in Trondheim, which has dimensions 35x25x15 metres – and contains various pumps and process equipment. Further synthesized test noise sources were created using loudspeakers. The wireless sensors, the noise mapping software and the IT backhaul architecture all operated reliably and successfully.

winos-system-test

Dynamic noise map generated with the system test

 

A further test, offshore on an operational Statoil platform, is planned and scheduled for Spring 2017, for which Yokogawa will supply 20 production sensors and the ISA100.11a wireless system. A typical platform deck of 50×50 metres might in practice require around 12 noise sensors for effective coverage.

isa100_yta-a-xx

Possibly future noise mapping sensors will be added in high noise plant areas

The Statoil WiNoS system is now ready for development into a commercially available product for use as an offshore platform noise mapping tool. Future research on this system will involve investigation of 3D noise mapping systems. Statoil consider that the equipment application has potential for expansion into machinery condition monitoring, to include automatic process upset or fault and leak detection.

© Nickdenbow, Processingtalk.info, 2016

References

 

The Yokogawa User Group conference in Budapest

The “User Group” conferences, which provide a meeting place for automation and control managers and engineers from different companies and industries to meet and share their operational experience, started in the USA, and have blossomed in Europe in the last few years. Usually hosted by a major supplier, they encourage their clients to come together in a way that is more cost effective, for them, than a standard commercial exhibition and conference. But they always gather their normal specialist sub-suppliers as partners, to also show and talk about their products, and explain how they can interface together to create a total plant system, in the mini-exhibition running alongside meal and coffee breaks.

IMG_20160523_214347932   DSCN3364

The conference dinner was held in the Hungarian National Gallery, by the side of the Danube 

The Yokogawa European User Group meeting took place this May in Budapest. It attracted around 200 engineers and interested editors from all around Europe: from Spain to Norway, from the UK to Turkey, to hear about recent new applications, and the latest product developments.

 

“Transformation 2017” is the current Yokogawa business plan, covering the three years from 2015-17: the year 2015 also happened to be the 100th year since the foundation of the company. So their anniversary year plan focuses on customer interfacing and “Co-Innovation”, which was the main conference theme for the presentations.

Yokogawa appears to have developed a different approach recently, and have become keen to bring in ideas, products and even make acquisitions to broaden their expertise base. They did this previously, but there is a greater emphasis now, it seems. They are also the ISA100 wireless sensor technology leader, amongst the main automation companies, and are helping more small sensor manufacturers to develop this capability.

Wireless sensors to ISA100

Yokogawa have produced wireless versions of their own temperature and pressure transmitters, as you would expect, plus have the routers and base stations necessary to complete the site system. More interesting, they have developed a wireless module, which can be integrated with other (third party supplier) sensors, to create a new wireless measurement sensor. They also have a battery pack that can be exchanged in a hazardous area, when needed, often only after ten years, but maybe after two years if that battery also powers a third party sensor and needs a fast data response time.

In a presentation about a Richter Gedeon Group pharmaceutical plant in Romania, Yokogawa described a wireless sensor installation that monitored the groundwater levels around the site, in 20 wells over an area 1500m x 600m, with some wells actually outside the factory fence. The historic weekly manual monitoring was not felt to be sufficiently frequent, and current environmental standards required an improvement, to at least 4 times a day. Standard HART submersible pressure sensors were used for the level measurement, powered by the battery pack in the Yokogawa wireless module, which communicated digitally with the sensors and then sent the data over ISA100 links. This provides hourly reporting data from each well, and allows the sensor to be put into sleep mode between readings.

The large area of the site, the topography and pipe bridges, provided a challenge for the wireless links. To achieve the transmission distances involved, Yokogawa planned the site layout with four of their independent wireless Routers, to gather data from the local sensors at the extreme distances, and then use the superior range achievable from the Router to the base station to deliver the data. This was then displayed by the pre-existing site ABB 800XA control system, to present any alarm data to the operators, and archive the records.

The IIOT and “Sushi Sensors”

Yokogawa say they have been working on the development of low-cost, small, battery operated wireless sensors, perhaps aptly named as “Sushi Sensors”, for ten years, as well as learning what associated data analysis is required to come to a meaningful conclusion about what the data – “Big Data” – is saying. So it was good to see their Sushi sensors on display, in different colours (as you might expect: blue, yellow/gold, and silver) – all with a little stub aerial. But turn these little bugs over and there was an empty shell – nothing there yet! Nevertheless, the work is going on, initially to produce temperature sensor systems: watch that space.

On other stands the GasSecure GS01 hydrocarbon gas detector was on show, which is another ISA100 wireless sensor from Dräger, marketed by Yokogawa for LNG and oil and gas facilities.

STAPS

Spirax Sarco STAPS

Next, Spirax Sarco presented their latest wireless sensor, used for monitoring steam traps on petrochemical plants. Available only recently, from March 2016, this sensor uses the standard ISA100 system, and is called STAPS (which stands for Spirax Total Acoustic Performance Solutions). The acoustic sensing uses a PZT sensor clamped to the outside of the steam line, alongside the trap, and can indicate when the trap is blocked, and when it has failed open, and is leaking live steam. Not only does the STAPS sensor calculate and transmit the rate of steam loss, so the operator can assess the cost and therefore the urgency needed to make a repair, it can analyse the actual type of trap failure. This is done within the sensor electronics, by measuring the emitted acoustic signatures in multiple bands between 5 and 40kHz, to suggest whether the problem is dirt, or a sticky valve, or a damaged valve seat. The STAPS sensor is available intrinsically safe, for petrochemical applications: Spirax previously offered a different wireless sensor for standard industrial plants and boiler rooms, which used a Zigbee communications link.

Customer software and Co-Innovation

There have been two Yokogawa acquisitions in the field of ‘management’ software, which are focused on making the computer based control systems supplied by Yokogawa for plant and process control provide the overview data required by management, improving the connectivity between plant and office, and optimising business operations. First they acquired Industrial Evolution Inc, in January 2016, who provide cloud-based plant data sharing services, or DaaS (Data-as-a-Service). Yokogawa renamed this business Industrial Knowledge: this service has been used in a broad variety of applications such as the sharing of data on oil and gas field operations among authorized users at multiple companies, and the real-time sharing of data with investors on facilities that are operated by third parties. For example when an oilfield is jointly owned by three oil companies, but only one of them acts as the main operator.

Then in April Yokogawa acquired KBC Technologies, a successful provider of software and consultancy focused on achieving operational excellence and improving profitability for both the upstream (oil production) and downstream (oil refineries and petrochemicals production) segments – advanced software for process optimisation and simulation. Originating with three process engineers who started life at the Exxon Fawley refinery, KBC also now incorporates the original Honeywell HPS reactor technology expertise, acquired in 1998, and the chemicals processing technology developed at Infochem, acquired in 2012.

Combining KBC and Industrial Evolution into their Industrial Knowledge business, Yokogawa is expanding its advanced solutions service business by engaging with its customers in a co-innovation process, to add value, using company-wide optimisation of the business operations.

Co-innovation with the specialists

Oil fiscal metering using specialist skids at oil tanker batch shipping terminals is a major application area for Coriolis meters. Yokogawa have just upgraded their Coriolis product line to improve their performance, using modern electronics and sensor technology. The pressure drop for a given flow rate has been greatly reduced, and on-site accuracy enhanced to meet the laboratory tested specifications. Also tube condition monitoring enables on-site checks to confirm that the process conditions have not affected the measurement tubes.

mf_header_skid

M+F skids in use at a tanker terminal

Unlike other Coriolis suppliers, Yokogawa do not offer an in-house fiscal metering skid production facility, but rely on the knowledge of their specialist customers to achieve the total package offer. So via their chosen skid supplier customer, M+F Technologies of Hamburg, they have supplied meters for terminal management systems, tank truck loading systems, aircraft and ship supply across the world. The M+F MFX4 batch flow computer has been supplied for blending, leak detection and terminal operations in Latin America, Russia, EU, and Cuba. The latest Yokogawa Coriolis meters, the TI product range, has enabled M+F to reduce the size of the gas separators involved, reducing the skid footprint, and also M+F have reduced the maintenance costs associated. Using TCP/IP communications the system has 24/7 remote maintenance available, essential for 24 hour terminal operations.

Conclusion

The two or three conference days crammed in a lot more than was described above: the delegate just chooses the topics of major interest on his plant. Further announcements showed that Yokogawa is to now construct complete Analyser house systems in Spain, in addition to their existing facilities in Singapore and USA, to serve the European market primarily. Here they act as the site systems supplier, perhaps in contrast to their approach to fiscal metering described above. Yokogawa are also collaborating with Cisco Systems over the Shell SecurePlant initiative, which is to be rolled out over 50 Shell plants, and have developed an interesting collaboration with StatOil, to use wireless sensors to monitor the on-site sound noise level on offshore oil platforms, to ensure personnel safety and monitoring.

YokogawaASICenterEurope_01 (1)

An Analyser house supplied by Yokogawa

The next Yokogawa User Group meeting will be in South Africa in October, for three days in Johannesburg, which should be well worth attending.

Radio system for simple temperature sensors

Signatrol, the Tewkesbury (UK) based manufacturer of the SpyDaq wireless temperature and humidity data logging system, has been awarded a UK patent for some of the communications aspects of SpYdaq, that make their system reliable, yet simple and cost efficient for pharma and food industry monitoring.

Initially designed to monitor and record temperature and humidity in buildings and storage areas, SpYdaq enables easy compliance with HACCP, EN12830, FDA CFR21 Part 11 and other relevant standards – where careful inviolate monitoring of storage conditions is required for quality reasons and to comply with legislation.

Unlike other similar systems on the market, SpYdaq features a unique high redundancy data package, specifically designed by Signatrol and it is this that has been recognized by the Patents Office and the award of UK Patent number 2479520.

SpYdaq monitors key parameters and transmits them, via a licence-free radio band, to a base station which then makes the data available via bespoke display and analysis software, using either an Intranet or the Internet. Using sensors linked by radio means that installation is quick and easy. The transmitters ‘sleep’ and then wake up at defined intervals to transmit the data. Using this method means that the transmitters are purely transmitters and not transceivers, thus reducing the cost and complexity of the system.

SpyDaq wireless from Signatrol

SpYdaq base station and sensors: this unit uses mobile phone links to the cloud for data monitoring and recording

A potential problem would arise with this approach when two or more transmitters try to transmit at the same time, and signals collide, resulting in loss of data. Signatrol has developed its unique communication system to ensure that in the event of a collision no data will be lost. In fact, for a fully populated system, the likelihood of losing a single reading is once in every 67 years.

Brian Turner, Managing Director Signatrol commented: “I am pleased that, although it has taken quite some time, our unique and innovative SpYdaq data logging system has finally been recognized with the grant of Patent. Many customers are already benefiting from this system and the patent will give added confidence to new adopters”

Indeed the Signatrol website quotes many well known names in the pharmaceutical and food industries as their customers: these are the major targets for Signatrol. Included are the NHS, AstraZeneca, Pfizer, GSK, and in foods Cadbury, Kellogg’s, Premier Foods and British Sugar.

The base stations can collect data from up to 16 transmitters, which can optionally also receive an external input signal, as well as monitor temperature and humidity. There is no info about the radio system employed, or the operating range, but various base stations offer local or intranet alarm set points, and there is also a unit that transmits data to the Signatrol cloud system for further recording and control actions. The base stations start at around GBP500, and the sensors at GBP130.

(c) ProcessingTalk.info

GE event: Improving Profitability with Big Data

In January, GE will launch a new Roadshow at three European centres: London, Paris and Milan. The event title is “Predict for Profit”- the GE Intelligent Platforms business will present their most advanced solutions to allow customers to transform the industrial internet information into reality, to gain valuable insights from the internet “Big Data” available from their processes and machines.

Big Data sets with no apparent value for the enterprise can be transformed into real Insights and information that customers can catch at the right time, and when the correct information is needed for decision makers.

The Industrial Internet is a key part of the GE strategy: it satisfies the need to combine machines, data, insights and people together in a connected infrastructure, a network that can be accessed by all operators regardless of the geographical position of devices and plants.

Every “intelligent” machine generates data that can be captured with the right devices and applications: these data can be represented through metrics along a time gap. The correct analysis and understanding of these data allow operators and managers to anticipate faults before they happen, and to plan the corrective action needed in advance.

The main benefit of predictive analysis is overall cost reduction, – or even cost avoidance – and profit increase, thanks to scheduled maintenance and leaner and more optimized operations.

‘Predict for Profit’ is an unmissable event for users that want to learn real application stories of companies that gained competitive advantage from the quantifiable production, profits and asset management improvements available using GE Solutions. It will be specific for professionals that want to know how to leverage the Big Data asset that each enterprise already owns.

Key insights are often hidden in the data storage, and can be extracted only with specific, user friendly and easy-to-implement Solutions. During these Roadshows, GE will show how to do this, and make Solutions Experts available from different geographical regions to show how it is possible to generate a real technology revolution in the industry.

The Roadshows will take half a day, finishing with a lunch, and will take place in: London on January 27th, Paris on January 28th, and Milan on January 29th. Apply for a place to attend at one of these events via:

http://www.ge-ip.com/ge-predict-profits

Rockwell Automation Acquires ESC Services

Rockwell Automation Inc has announced that it has purchased the assets of ESC Services Inc, a global hazardous energy control provider of lockout-tagout services and solutions.

Matt Fordenwalt, Rockwell Automation consulting business manager said  “ESC Services will enable Rockwell Automation customers to increase asset utilization and strengthen enterprise risk management, while adding safety to our growing portfolio of data-driven, cloud-enabled services.”

The unique ESC methodology utilizes Quick Response (QR) codes that can be scanned to obtain asset information and streamline compliance with both external regulations and internal safety policies. “The global use of lockout-tagout is expanding among multi-national corporations, and represents a great growth opportunity,” said Kelly Michalscheck, president, ESC Services. “This acquisition enables us to extend the ESC Services lockout-tagout procedures and ScanESC solutions to tens of thousands of additional OEM machines, delivering more value and unique offerings to the extensive global channels of Rockwell Automation.”

ESC Services, based in Franklin, Wisconsin, will be integrated into the Rockwell Automation Control Products & Solutions segment as part of its customer support and maintenance business unit. The ScanESC lockout-tagout technology and solutions will be on display at the upcoming Rockwell US Automation Fair, scheduled for November 19-20, in Anaheim.