Roxtec transits ensure safety on “Mein Schiff 6”

DCIM100MEDIADJI_0305.JPG

On cruise liner Mein Schiff 6 of TUI Cruises, thousands of Roxtec transits provide certified protection against fire, gas, water and electromagnetic disturbance. Co-owner Royal Caribbean and shipyard Meyer Turku in Finland continue to cooperate with Roxtec to enable the use of more plastic and composite pipes.   “Roxtec transits make it cost-efficient to install light-weight and long-lasting plastic pipes,” says Berth Strömborg, senior superintendent of Royal Caribbean.

One sealing system

Over 6000 openings for cables and pipes in decks, bulkheads and cabinets are sealed with Roxtec transits. The seals are used in the engine room as well as in passenger areas, and many of them include spare capacity for additional cables and pipes.  “It is good to have one supplier for all pipe systems,” says Antti Laaksonen, system responsible for HVAC and catering design at Meyer Turku.

Optimizing logistics

Mika Tuokko, head of electrical outfitting at Meyer Turku, says one hundred installers have been working with Roxtec cable seals on the new cruise liner:  “The most important thing is to keep up the speed by handling fewer items. By using Roxtec instead of other systems we avoid 50 items in stock for each transit.”

unnamed (2)

Roxtec Mulltidiameter bulkhead seals in-situ

About Roxtec and Multidiameter

The Swedish Roxtec Group is the world-leading provider of modular-based cable and pipe seals. The company’s invention for adaptability to cables and pipes of different sizes, the Roxtec Multidiameter, is based on sealing modules with removable rubber layers and allows for a perfect sealing, regardless of the outside dimension of the cable or pipe.  The technology simplifies design, speeds up installation and reduces the need for stock, material and logistics. It also provides spare capacity for upgrades. Roxtec serves and supports customers in more than 80 markets through subsidiaries and distributors.

Yokogawa acquires FluidCom chemical injection valve technology

Yokogawa has announced the acquisition of TechInvent2 AS, a Norwegian enterprise
that holds the rights to FluidCom, a chemical injection metering valve (CIMV). The FluidCom CIMV prevents blockages and corrosion in oil wells, pipelines, and other facilities and employs a patented technology for thermal control. It incorporates the functions of a mass flowmeter, control valve, and valve controller and has very few moving parts. FluidCom systems have already been delivered to several international oil and gas majors. With TechInvent2 joining the Yokogawa Group, Yokogawa will now target delivery of this solution to the oil and gas upstream and midstream sectors, thereby helping to improve operational efficiency, reduce operational costs, and enhance health, safety and the environment (HSE).

Background Information

Based on its Transformation 2017 mid-term business plan, Yokogawa will continue to focus on the oil and gas industries, and will strive to strengthen its solutions targeting the upstream and midstream sectors, in addition to its forte downstream sector businesses.

Following its April 2016 acquisition of KBC Advanced Technologies, a provider of consulting services that are based on its own advanced oil and gas simulation technologies, the company has been striving to work with its customers to create
value through the provision of solutions that address every aspect of their business activities. At oil wells and pipelines, efforts to ensure a secure oil flow path (flow assurance) play an important role in maintaining production efficiency. The adherence of various chemical substances to the inside walls of a pipe can reduces its internal diameter and causes corrosion. To prevent the accumulation of substances and corrosion, certain chemicals must be injected in the pipes. Improving the efficiency of this process is a major challenge in the upstream and midstream sectors.

The FluidCom CIMV

FluidCom

Chemical injection valves have traditionally been manually operated in the upstream sector, although there are cases where chemical injection has been automated using an actuated solution. In the former case, the valves must be frequently opened, closed, and adjusted by plant personnel. This is costly as it necessitates the hiring of additional staff, and it is work that must be done under very harsh environmental conditions in the field.

It is also a well-known problem that inaccurate and unstable dosing of chemicals leads to additional operational costs and challenges with specific processes. To address and resolve such problems, there is an increasing demand for integrated automatic injection solutions that perform stably and offer a high level of precision in the dosing. The FluidCom CIMV has a unique design which is based on a patented technology, providing integrated flow control and metering using a unique combination of material and thermal effects.

FluidCom is a fully automated and reliable device with a simple design that performs autonomous valve control and continuous flow metering. The device is able to stably inject chemicals in the required small amounts. It has few moving parts and has proven to be an accurate, reliable solution for the control of chemical injection applications. No regular maintenance is required and remote control features are provided.

The device features a self-cleaning mechanism that reduces maintenance workload, and the automatic injection of chemicals in the correct amounts eliminates the need for manual interventions by plant operators and maintenance workers, thereby enabling personnel to lessen their exposure to harsh environmental conditions in the field.

Chemical injection valves have traditionally been operated as manual systems in the upstream sector under harsh conditions. The FluidCom can automate chemical injection operation and reduce times that plant operators and maintenance workers go to field and operate in harsh environments. So using FuidCom improves healthy and safety.

FluidCom is also a valuable solution for downstream operations, where corrosion prevention is always a pressing concern. An ISA100 Wireless version is planned. The ISA100 Wireless technology is based on the ISA100.11a standard. It includes ISA100.11a-2011 communications, an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Commenting on the acquisition of this company, Shigeyoshi Uehara, head of the Yokogawa IA Products and Service Business Headquarters, said: “FluidCom will improve flow assurance, which is a key concern of our customers in the oil and gas industry, and it will make a major contribution to their operations by helping them not only improve production efficiency and reduce operational costs, but also enhance HSE. The combination of FluidCom, KBC simulation technology, and Yokogawa field devices will allow us to expand the range of our upstream and midstream solutions and enable the delivery of value in new ways to our customers.”

About TechInvent2

TechInvent2 is a fully owned subsidiary of TechInvent AS, a Stavanger, Norway-based company founded in 2008. TechInvent is owned by the founder and CEO Alf Egil Stensen, the venture capital firm Statoil Technology Invest AS, Aarbakke Innovation AS, and Ipark AS. The company has been supplying its FluidCom chemical injection technology to major oil companies since 2016. Alf Egil Stensen will continue as CEO of the company now that it is part of Yokogawa.

The mystery of intelligent sensor diagnostics

The fashion, or trend, that has developed over the last few years for process and analytical instrumentation sensors is to use their on-board intelligence to monitor their own performance status. They achieve this by monitoring and tracking various diagnostic measurements – secondary parameters where consistent values are said to indicate the sensor is working as it should, and has not been subject to any changes since leaving the factory.

This approach is easily understood if you consider the possible effects of exposure of a sensor to excessive temperatures, which might soften the potting or glues holding a sensor to a ‘window’ – and it can be expected that this would be detectable. The addition of a diagnostic sensor, such as a temperature probe, within the sensor housing, could also be an option for checking the sensor condition, and alarming if the sensor exceeds a high or low set-point.

But how else do sensors check their own performance, and how relevant are these “checks”? This topic was discussed in the latest issue of the South African Journal of Instrumentation and Control, August 2017 issue: SAIC is a journal produced by technews.co.za.

Modern (intelligent?) sensors

So, over the past two years of attending and listening to presentations, and reading relevant articles describing the advantages of self-monitoring systems and sensor diagnostics, waiting for an engineer’s explanation as to how the clever monitoring system actually tells the factory instrument engineer anything, it is a bit of a disappointment to report that there seem to be no suppliers that actually make any significant disclosure. This applies across sensors ranging from ultrasonic and Coriolis flowmeters, electromagnetic flowmeters, level measurement systems using radar or ultrasonics, and level alarms. Obviously all the major suppliers are involved in such equipment, and compete with each other, but this secrecy seems a little extreme.

The problem is possibly that until a manufacturer can point to a failure that was detected – or anticipated – using their diagnostics, and decides to publish it, the user population has no idea what systems might actually work. But equally, by publishing a success for the diagnostics, the same manufacturer is saying that one of his sensors failed – and that is a very unusual event, these days. Plus also maybe not something they would wish to publicise.

The older approaches

The whole idea of diagnostics and sensor monitoring has been around for a long time. From personal experience with Bestobell Mobrey, in the 1980s, Mobrey launched an ultrasonic version of a float switch, the ‘Squitch’, which switched a two wire mains connection through a load circuit. When not alarmed it just sat there taking a small control current. For customer reassurance that it was operating in this quiescent state, there was a blinking red LED to show that the sensor was ‘armed’ and operating normally. Mobrey called that a heartbeat indicator, a term that is now used more widely.

For custody transfer flowmeters, the classic approach to validate confidence in the reading is to use two meters in series, and check that both give the same answer. This has progressed to having two separate ultrasonic flowmeters mounted in the same flowtube, on some installations.

For the more safety conscious plant there are often requirements for duplicated sensors for such duties as high level alarms, where two different technologies are used by the sensors – e.g. by mixing float, capacitance or ultrasonic level alarms.

The modern approach

It seems that the ultimate approach is to let the sensor supplier link into your plant automation and data system to interrogate the sensor, and he will verify the measurement and performance diagnostics on a regular basis. With many and varied sensors, this leads to a lot of external interrogation of your plant assets, and possible worries over losing control of your plant.

Overall, it begins to look as though it is becoming impossible for a discerning plant engineer to decide which supplier has the best performing diagnostic system to monitor the relevant sensor’s performance. Rather like opening the bonnet of a modern car, and deciding it would be best to take it to a garage!

At a recent lecture on this subject, held by the InstMC Wessex section in co-operation with Southampton University, a detailed discussion concluded that the sensor suppliers now have all the real expertise in-house and a normal plant engineer could not be expected to cover the depth of this technology for all the many sensors and other equipment within his control. In the end the decision as to ‘which supplier to use’ returns to your own previous experience, including the service and support that has been and is now on offer, and the suitability of the product for the money available for that sensor task.