Enterprise asset management

Tree swing with 3 seatsAs marketing requested it


Tree swing with 3 supports As sales ordered it


Tree swing fastened to trunk As engineering designed it


Tree swing in the trunk As we manufactured it


Tree swing suspended in missing trunk As field service installed it


Tree swing made of a tire What the customer wanted

EAM: A societal oxymoron – an article by  Harry H Kohal, vp of business development for Eagle Technology Inc

OK, I had never heard of them either, but its a very nice article:

Enterprise asset management (EAM) is a way of thinking, a discipline, and ultimately a culture that increases equipment life and production uptime. One of the dichotomies we face when we talk about asset life is the conflict between quality and reliability in the corporate world, and disposability in everyday life. When our new washing machine was delivered from Best Buy, the delivery person said “This is a nice washing machine, but don’t expect it to last like your old one did.” That old machine washed for four daughters, a mother-in-law, dogs, and, of course, my wife and me. Of the 25+ years we had it, we had the repairman out once or twice, but we were assured that the repairs were worth making! Now I am not sure I will need a repairman, as my smartphone can transmit any issues directly to the factory—but is the machine made to last?

In the corporate world, the stakes are heightened. The money invested means the manufacturing equipment, custom machines, robots, and associated belts, conveyors, and gears have to be reliable, so we can optimize uptime and yield top dollar. Mining shovels, robotic welders, injection molding machines, and milling machines are assets sometimes costing hundreds of millions of dollars, and they must be reliable and dependable. However, modern manufacturers of this equipment try to balance between designing and building a machine that will last forever and meet customer needs, and that will have a limited life cycle. There is no future in building the machine that lasts forever. There is no doubt in my mind if we were willing to pay the price, a washing machine could be built to last the lifetime of a family. In fact some commercial washers could match that potential the way they are currently built, but most people do not buy commercial washers for their homes.

So what does this washing machine have to do with enterprise asset management?

The disposable mentality is a part of our current culture. We expect things to last for a while, and then we get rid of the asset and buy a new one. The products are not designed to be fixed, which would cost the manufacturer future sales. However, the same manufacturer producing these disposables needs the equipment it uses for making its products to last “forever.” We no longer take our televisions to a repair shop. When they stop working and are out of warranty, we go get a newer one with better energy-saving features and better picture quality. When it comes to businesses, that strategy is avoided like the plague, because the longer capital equipment is in service, the higher the return on investment. Maintenance people are asked to keep assets running, but are not provided properly installed EAM systems to be more productive. Is this cultural attitude, the disposability we live with every day, the reason management of many companies does not seem to relate to EAM? It may be a strong contributor. Another more prevalent underlying issue is the lack of skills and desire to do data analysis. This requires time, expertise, and management that is responsive to the news this data reveals.

Many maintenance programs have so-called EAM programs that consist of fixing assets when they break. The manufacturer’s recommended maintenance schedule has been lost over the years as staff changes, resulting in early failures and unexpected breakdowns. Management may have the attitude: “Preventive maintenance or predictive maintenance is something those really sophisticated companies do, not us.” “We don’t have the time or manpower for that” is a typical response from small to mid-tier companies; the businesses that need to manage their assets to remain competitive.

There is an industry-wide shortage of people who can do quality analysis and repair work. No one 18 to 22 years of age is going to college to become a repair person; it is not glamorous. Why is this occurring? For the very reason the washing machine is not going to last 20 to 30 years, the world views more and more things as disposable, and there is not a perceived need for someone to repair something. Even when your automobile gets to 100,000 miles and things start to break, the mechanic will tell you it is probably better to go buy a new car. After all, the old car did not have Bluetooth, USB, better widgets for driver comfort, and the new safety features! Who do you know who is not a NASCAR driver who dropped a new engine and transmission into his or her car in the past three years?

EAM defined

I recently presented the outlook of EAM and its effectiveness to a group of facility vice presidents, directors, and managers, and the forecast was fair to partly cloudy! The forecast was based on the diversity of implementations I have seen over the past decade. Depending on the experience of the responsible manager, when the solution was implemented, and who participated in the process, I have seen good to very poor implementations. While we may agree that software should be intuitive in its usage, most of the implementations that were failures did not fail because of the software. They failed because the implementer failed to define what success will look like!

When I got started in business, I came across a tree swing cartoon that aptly described how clearly we all have a point of view, and how that point of view affects what we see. Many variations of this tree swing cartoon exist online, but the actual creator remains anonymous. The cartoon is replicated in this article. It illustrates several different ways a swing is tied to the tree with captions describing how marketing requested it, how the sales team ordered it, how engineering designed it, how it was manufactured, and how it was installed. In the end, the final tree shows the swing exactly the way the customer wanted it.

If I ask each of you what a successful EAM implementation looks like, I believe we might end up with the same variations, so the question that faces us is “is anyone wrong?”

Several of the views above provide some functionality, but they have limits. One of the views provides no functionality, but the rider will not fall off the seat.


Communication means: “Saying” and “Hearing” have the same message.

Marketing request: Tree swing with 3 seats
What the user really wanted: Tree swing made of a tire

 

Team effort

Implementing an EAM solution is not a one person job. A team view is required to implement any EAM solution. You may disagree, and tell me you know everything there is to know about your business. I may agree when it comes to what assets need preventative maintenance (PM) and the steps for that PM, but I challenge you to identify the data your CFO or CEO will need five or 10 years from now to make solid business decisions. What data do you need to defend your organization from a lawsuit? Where are your documented processes and procedures to assure the quality of data in the system? How did you structure your nomenclature of assets to allow for additional assets, locations, companies, or customers?

You see, the decisions for an EAM solution extend beyond today, and potentially beyond your tenure in the job; it is a companywide solution. If you decide parts and the associated costs are not important, or the work done by contractors is not important, or labor/time capture is a waste of time, or closing work orders is not necessary as long as the work is done, you are heading down the path of failure!

Expert help

Some of you will read this and think, “Duh, of course you have to do those things!” However, the reality is I see people who only want to use the system for PM, who say they do not need training, and they will figure it out on their own!

Wake up! You may be smart, but so were the people who designed the tree swings. It is not about the software, it is about the identification of success.

Expert help and training are not just about the software, they are about putting the 5,000 pieces of the puzzle on the table, sorting them out, communicating to make sure everyone knows what the end picture looks like, planning the process to get the outline of the puzzle in place, and developing the plan to fill in the missing pieces. Unlike a puzzle that will reach completion, the EAM solution will never be done. New equipment will be added, old equipment decommissioned, and new technology, new regulations, and new processes adapted to refine and improve everyone’s view of the picture of success.

New players will come into the game, and the standard operating procedures (SOPs) have to be adhered to so data quality is consistent and valid. Periodically, time must be spent to assure that data is good. The other thing I learned early in my career is “garbage in, garbage out.” It still applies, and garbage data leads to many failures of EAM solutions, which is not the software vendor’s fault.

I can cite many examples where the company gave the EAM solution to the production manager, the position changed hands, and the new person felt a new solution was needed, throwing away potentially valuable information! Then in six or 10 months the CFO said, “we have to cut staff; maintenance expenses are too high.” Thus, the manager had no data to support the value of the work his staff had done, and what it will really cost the company to decrease staffing. You see the job is not just to fix things, keep them running, and manage people, it is all about managing data, a fact lost to many!

The real issue

I have pointed out several stumbling blocks to successful EAM solutions: culture, people, the lack of definition of success for the company, the need to look beyond today, and the changing role of the people responsible for EAM. The problem is complex, as the labor force becomes scarcer, as management misreads the value of EAM, as establishing a solution with SOPs and the enforcement of those standards is complicated. The changing regulatory landscape must be reflected in the detail of the work order tasks. It is not enough just to say “PM the machine.” In the end, there are many good EAM solutions, but the real test when looking for a solution is to ask yourself, is the vendor most interested in just selling the software, or does the vendor have the ability to help me map out the path to success? If you engage a vendor that has helped customers map their success plans, that vendor can help you, too. Why go it alone and risk failure? That cost is much higher than the cost of some training and consulting; it could save your career. The real issue is that the world is changing, and if you are not willing to admit you need to change, you are doomed, and your EAM solution will be doomed. After all, the outlook is fair to partly cloudy.

Regular news on Process Automation and Control topics is presented in the INSIDER monthly newsletter, supplied on subscription by Spitzer and Boyes LLC: Nick Denbow is the European correspondent for the INSIDER. For more information please consult http://www.iainsider.co.uk or http://www.spitzerandboyes.com

Thales promotes Cybersecurity business line

The following review article was published in the May 2014 issue of the INSIDER Newsletter:

The Thales Group occupies one of the major office developments on the outskirts of Basingstoke in the UK: the building was known for many years as Thales Missile Systems, from the name on the outside – it was not a company that immediately sprung to mind as an expert in control systems and information technology. Over the past year the attitude from within Thales seems to have developed, and has recently seen much more information flow in press releases and meetings discussing their business. Last autumn saw the launch of a new ‘Cyber Integration and Innovation Centre’, and the associated business activity, housed within this building, a GBP2m ($3.2m) facility with fully isolated and screened computing laboratories, designed to allow improved cyber security and testing for critical national infrastructure, governments and companies.

Screened, because the centre has over 6000 pieces of computer malware, that can be used to test mirror copies of client networks, and where managed cyber-attacks from one lab onto an adjacent lab can be used to train staff how to protect systems, spot vulnerabilities and respond to breaches, including mass ‘Denial of Service’ (DOS) attacks.  “We can model networks for clients in a safe environment so we can upgrade, update and change things before they go live. This is particularly important in safety critical industries, such as a nuclear power station,” said Sam Keayes, a Thales vp, now presumably within a new business division formed recently known as the Critical Information Systems and Cybersecurity business line. Using equipment and technology from strategic partners like Spirent, Encase, FireEye and Mandiant, Cevn Vibert, the centre manager, commented that Thales experts can pick up and mirror a site computer system, bringing the whole infrastructure back to the lab, to stress test it against cyber-attack, jitter etc. This is a very necessary service when Thales systems run the majority of the world’s air traffic control, and their encryption is used to protect 80% of the world’s bank transactions, which include 3.7Bn transactions per annum via BACS.

Thales is a French owned group, which was originally called Thomson-CSF. The only slight problem with the simpler name is that it is pronounced “Talliss”. Their acquisition of the original business of Ferranti Computer Systems allows the claim that they have been providing technical support for the UK fleet of nuclear power stations for the last 25 years, which is a continuing responsibility, as the service life of these stations continues to be extended.

Based on Ferranti expertise

Here I have to admit that even your editor is not old enough to know the history behind some of the businesses that make up the current Thales Group. For that sort of archival knowledge we have to go back to Wikipedia, and even to Andrew Bond, the Founding Editor of the INSIDER, who remembers the original UK based DCS manufacturers and vendors from the 60s and 70s – Ferranti, Kent and GEC Elliott.

Ferranti was formed in 1882 as Ferranti, Thompson (yes- that Thompson) and Ince. Much later the company played a major part in WW2 in the development of radar, and gyro gunsights for the Spitfire. In 1949 they produced their first multi-input battlefield situation information system. At the same time they started to develop computer systems: eventually the Government under Tony Benn organized an industrial consolidation which led to the set-up of ICL, International Computers Ltd, in 1968. This deal restricted Ferranti to the industrial computing market, rather than the commercial, and Ferranti developed the Argus range. In 1987 Ferranti purchased International Signal and Control (ISC) in the USA, a defence contractor, whose business turned out to have been based on illegal arms sales. ISC was prosecuted for fraud, and this forced Ferranti into bankruptcy in 1993.

The Ferranti Computer Systems operations were acquired out of administration by Syseca, the IT arm of the French Group Thomson-CSF. Thomson then changed its name to Thales, and Syseca became Thales Information Systems.

The other UK producers 

Andrew Bond sees the rest of the UK history of DCS manufacturers as intertwined with the career of the late Tony Benn MP, who became Minister of Technology in the Labour Government of 1964-70, and secretary of State for Industry from in the 1974-79 administration. George Kent needed rescuing in 1974, possibly because of the strains of the investment in their new DCS, the P4000, and Benn wanted Arnie Weinstock’s GEC to take them over, out of the two options available: but his worker democracy approach backfired, and the workers voted to opt for Brown Boveri, as a better choice for their new owners. Following the Brown Boveri merger with ASEA in 1988, the P4000 became just another of the original control systems within the ABB group.

Meanwhile GEC under Arnie Weinstock was not enthusiastic about process instrumentation or automation, and already had business links with Fisher valves, so with Benn’s encouragement put all the GEC automation interests into a joint venture with Fisher, which included their own DCS and the systems made under license from ICI, Imperial Chemical Industries, which they had developed for their own plants. GEC had acquired the Elliott Brothers business within English Electric in 1968. Monsanto had acquired Fisher Controls in 1969, and much later sold the business to Emerson in 1992: at some time in this period Weinstock backed out of the JV and sold out from any involvement in process automation.

Ferranti Argus computers

The Argus was first developed for military duties – in 1958 used for the ground-based control of Bristol Bloodhound missiles – and were also offered as industrial control computers from the 1960s into the 1980s, for factory and plant automation. They were widely used across Europe and in the UK: typical installations for the Argus 500 were in chemical plants for process control – and nuclear power stations, for process monitoring. The first such Argus sale in 1962 was to ICI, for a soda ash and ammonia plant in Lancashire. Another significant application was for Police command and control installations, where one of the most famous was in Strathclyde: here maps were provided by using a 35mm slide projected onto a VDU screen. The Argus 500 was one of Ferranti’s best-selling products, particularly to oil platforms in the North Sea in the 1970s.

The Argus 600 was an 8-bit machine, and the Argus 700 used 16-bit architecture, whose design started in 1968, and they were in production until the mid-1980s: these are still operational at several British nuclear power stations in control and data processing applications.

Current declared activity

Thales do not mention a significant part of their business activity – a necessary culture, developed over the years since WW2, because of involvement with military projects. This ethos remains, in particular in not declaring where security, cyber-security, and emergency management resources might be deployed, whether military or commercial. However, there is an interesting parallel between Thales and EDF, of France, who now owns all the operational nuclear power plants in the UK. Thales is quoted as a long term delivery service partner with EDF. Following the Fukushima event in Japan, EDF-Energy NGL undertook a rigorous assessment of the resilience of its fleet of UK nuclear power stations, against the highly unlikely occurrence of an extreme weather or other natural event. Part of a suite of safety enhancements resulting is the provision of a mobile emergency response capability that could be deployed should such an event occur.

Thales committed to provide 5 sets of a containerised DCIS (Deployable Communication and Information Systems) for this duty by 31st March 2014. As a nuclear emergency response capability, each DCIS provides a transportable and deployable containerised unit to monitor critical plant systems and relay essential data through a resilient communications network, to provide emergency response decision makers with the information that they need to make the best possible decisions.

Separately, Thales has a co-operation agreement with Schneider Electric for the development of cybersecurity solutions and services to protect command-and-control systems from cyber-attack in customer installations in France. This includes computer attacks launched from plant management systems, unauthorised access across wireless networks and malware introduced via USB memory sticks.

Critical national infrastructure protection also includes work with oil and gas installations, petrochemical plants and pipeline systems. Thales quotes their integrated security protection systems with perimeter and access control, using CCTV etc, for twelve of the SABIC sites, and advise that Aramco refineries have similar high technology systems, supplemented by video motion detectors – the Ras Tanura complex is another site where there is such a perimeter security system.

Crisis management systems

The authorities and forces responsible for public safety and security must contend with increasingly frequent and wide-ranging incidents, from crime and accidents to natural disasters and crisis situations. This is one of the areas Thales sees as a major activity area and strength of their capability. Thales has developed a new solution incorporating the key conventional functions — situation awareness, management of command information and crisis management system resources — combined with new modules, such as advanced decision support and asset coordination. These systems are quoted as deployed in the Ciudad Segura (secure city) project in Mexico, the crowd flow and density monitoring systems in Mecca, and the BDSP public security database for the Gendarmerie Nationale in France, with systems that incorporate the deployment of sensors in UAVs. There are many more examples that cannot be quoted. Whilst in the process industry we are becoming familiar with the iOps concept from Emerson, and the Honeywell Collaboration station, the Thales Command and Control Centre is maybe a couple of grades more advanced.

Part of the suite of labs in the Critical Infrastructure Protection Facility in Basingstoke featured a combined system for perimeter security, CCTV, process control – including a DCS and a PLC (both from well known names) with valves in control loops, fire and gas alarms and access control, which enabled demonstration of the possible effects of a cyber-attack. This has been used to show legislators and management – and train operators about – the vulnerability of such systems. Manager of this facility, Cevn Vibert, explained “Our customers manage mission critical infrastructures and benefit from our holistic integrated security solutions. The market has evolved from discrete bespoke islanded systems to multi-site networked control rooms which require our integrated security techniques. These solutions cover people, operations, security, process, maintenance, business and cyber security for holistic situational awareness. This facility enables Thales to test, educate, demonstrate and explore these innovative approaches to our customer’s real needs.”  It is no coincidence that Thales is exhibiting this part of their technology at International Security and Resilience exhibitions across the Middle East, and are targeting Governments and operators of critical infrastructure projects worldwide.

Regular news on Process Automation and Control topics is presented in the INSIDER monthly newsletter, supplied on subscription by Spitzer and Boyes LLC: Nick Denbow is the European correspondent for the INSIDER. For more information please consulthttp://www.iainsider.co.uk or http://www.spitzerandboyes.com

UK wind turbine manufacture by Siemens

This article was published in the April 2014 issue of the INSIDER:

In a new manufacturing investment in Hull and Humberside, on the northeast coast of the UK, the Siemens Energy business and Associated British Ports will together invest a total of GBP310m ($500m) in two manufacturing sites, which will create up to 1000 jobs. The project to redevelop this part of the old fishing docks in Hull, known as Green Port Hull, was started some five years ago by the last Government. In fact Siemens have now expanded their original plans, and will invest in a second site nearby at Paull, creating a plant for the manufacture of wind turbine blades incorporating the next-generation of blade technology.

This plant will be the first manufacturing plant of its kind, and involves GBP80m of the GBP160m ($265m) Siemens is investing. Each blade will be 75 metres long: when rotating they will cover an area the size of 2.5 football pitches. The Green Port Hull facility will also involve an investment of GBP150m ($250m) by Associated British Ports, and will create a construction, assembly and service facility for Siemens wind turbines.

The Siemens view

Dr Michael Suess, member of the managing board of Siemens and chief executive of their energy business, said: “Our decision to construct a production facility for offshore wind turbines in England is part of our global strategy. We invest in markets with reliable conditions that can ensure that factories can work to capacity. The offshore wind market in Great Britain has high growth rates, with an even greater potential for the future. Wind power capacity has doubled here within two years, to roughly 10GW. By 2020, a capacity of 14GW is to be installed at sea alone, to combine the country’s environmental objectives with secure power supply. Projects for just over 40GW are currently in the long-term planning.”

Roland Aurich, chief executive of Siemens in the UK, said: “Being able to further increase our presence in the UK with this significant commitment is great for Siemens, for the UK economy and for future generations, who will benefit from more secure and sustainable, low carbon energy.” Siemens employs about 13,700 workers in the UK, with 4000 of these in the energy sector.

The outlook

UK Energy Secretary Ed Davey told the BBC (after a winter of storms): “Offshore wind is producing 80-85% of the time. We are the leading country in the world for offshore (wind) investment.” The Siemens news is a fillip for the wind power enthusiasts, who have recently seen offshore farms scaled back for various reasons, including the danger they pose to rare species of migrating birds. The typical price for power generated by new offshore wind farms in the UK is GBP100 per MWh, about twice the current price for power in the UK, with the difference subsidized by levies on consumer energy bills.

Regular news on Process Automation and Control topics is presented in the INSIDER monthly newsletter, supplied on subscription by Spitzer and Boyes LLC: Nick Denbow is the European correspondent for the INSIDER. For more information please consulthttp://www.iainsider.co.uk or http://www.spitzerandboyes.com

Emerson spends GBP20m on Aberdeen service centre

Emerson has broken ground on a new GBP20m office and service centre at Dyce, Aberdeen, Scotland to support the North Sea oil and gas industry. The Aberdeen facility is one of a series of new regional service centres Emerson Process Management is opening around the world as part of its ongoing commitment to provide local support, training, and services for its customers.

“Today’s ground breaking is the first milestone in the construction of this important new facility which will provide our customers operating in the North Sea with an enhanced range of services and support,” said Stuart Brown, General Manager, Emerson Process Management UK and Ireland. “This investment demonstrates our commitment to the growing number of large oil and gas installations in the area that will require lifecycle support to keep their operations running efficiently and profitably.”

The facility will support a range of services and solutions from both Emerson Process Management and Emerson Network Power. A 2600sq.m office accommodating sales and support will be linked to a 3065sq.m service centre and provide a customer collaboration suite and meeting facilities.

The facility will house Emerson Network Power’s global training centre for industrial systems, as well as offering its sales, design, project management, commissioning and maintenance services. A lifecycle service centre will support Emerson Process Management customers’ North Sea installations. In addition, an Integrated Operations (iOPs) centre that uses a working model of a production enterprise, will help address customers’ needs for streamlined decision-making, easily accessible expertise and the safe, collaborative collocation of essential personnel.

“The greatly expanded resources available within the new facility will build upon our well established operations in Aberdeen,” said Brown.” These include the oil and gas sales and support team, specialist oil and gas industry metering and measurement services, as well as Emerson Network Power’s industrial grade AC and DC UPS system solutions to support wide-ranging onshore and off-shore process and safety critical applications.”

The fully equipped training centre will further enhance Emerson Network Power’s industry-leading capability to manage and deploy accredited engineers for both planned and emergency offshore service support work.

Services available from the new centre will include enterprise asset management, engineering and operations support services, products and systems training and education, total metering management, metrology consulting, and calibration and production data validation. For customers with urgent service needs the centre will also provide repair services and emergency spares.

The new facility will replace the existing offices located in nearby Kirkhill, Aberdeen, and is one of over 400 services centres Emerson Process Management has worldwide. When fully operational in mid-2015, the facility will have a team of over 150 Emerson personnel.

The facility will be located within the D2 Business Park, a major new business hub currently being developed by Miller Developments, a division of The Miller Group, one of the UK’s leading property development companies.

David Milloy, Joint Managing Director, Miller Developments, said: “Since its launch last year, D2 is quickly establishing itself as a prime location for business in Aberdeen and we are delighted Emerson has recognised its potential. Not only does D2 have a fantastic location with superb transport connections, but occupiers like Emerson can also benefit from the ability to create a bespoke package of facilities which are tailor made to suit their needs.”

Regular news on Process Automation and Control topics is presented in the INSIDER monthly newsletter, supplied on subscription by Spitzer and Boyes LLC: Nick Denbow is the European correspondent for the INSIDER. For more information please consult http://www.iainsider.co.uk or http://www.spitzerandboyes.com