Battery Energy Storage Systems help UK power efficiency

Nidec ASI, of Milan in Italy, part of the appliance, commercial and industrial motor business of Nidec in Japan, has won an order from the UK-based EDF Energy Renewables business for the installation and supply of a second Battery Energy Storage System (BESS), for use on the British National Grid.

EDF ER, a renewable energy developer, is a JV company between EDF Energy in the UK and EDF Energies Nouvelles in France. As a result of this new contract, Nidec ASI will act as an EPC (engineering, procurement, and construction) contractor to supply the 49 MW BESS system that EDF ER is building to serve the National Grid, the British electricity distribution company. The contract, which follows closely after an earlier large-scale deal for a 10 MW battery energy storage system (also for National Grid) makes Nidec ASI reach a 33% market share in the British BESS systems market.

As renewable energy resources are more widely used – to reduce the environmental impact of power generation – investments in battery energy storage systems are becoming increasingly prominent. These stabilise the power grid by temporarily storing any surplus electricity generation, and discharging the saved electricity during power shortages. Last November Nidec ASI delivered the world’s largest (90 MW) BESS system to major electricity firm STEAG of Germany. As a leader in the BESS market, Nidec is committed to stabilizing the world’s power grids and contributing to realizing a low-carbon society via the spread and expansion of battery energy storage systems and high-quality state-of-the-art equipment.

EDF West Burton 2

The BESS will be installed at the EDF Energy West Burton site in Nottinghamshire, pictured above, to support the UK’s National grid.

Advances in battery technology

The opportunities for spin-out businesses and industries from university research projects are multiplying. The growth in this sector comes from the acceleration of technology in general, but also because the increased investment in education means there are a lot more research students, some with good ideas, but others just looking for topical subjects to latch onto for their research project. Also, industry has learnt that by funding some low cost university research, other ideas might emerge that might be of benefit.

A lot of attention is being given to new designs of battery, as there are some well-known major commercial projects where new systems are needed. First to come to mind would be batteries for electric cars like the Tesla. Here, low-cost, lightweight and relatively compact devices are needed, with high-power output and fast charging. Second are the batteries (or systems) needed to store the power generated by solar farms or wind turbines, during the hours when it is not needed, so that it is available for different times of the day. Possibly lower down the priority list are the small long-life battery systems needed for IIOT sensors and industrial sensors in general. These do not have the major numbers, or the (relatively) high price, so do not attract as much attention.

Eliminating standby power drain

So, it was all the more interesting to hear of research at Bristol University, in the UK, where Dr Stark and his colleagues in the Bristol Energy Management Research Group have developed an electronic chip that can switch on a sensor only when that sensor is being asked to provide or monitor data: for the rest of the time the chip and the circuits which it controls consume no energy at all. It may not be a new battery development as such, but it would allow a much extended battery life, by eliminating all stand-by current drain.

The principle is that the chip uses the small amount of energy transmitted in the interrogation signal from the system asking for the data, to trigger a circuit that switches the device on. The interrogation signal could be from an infrared remote control, or a wireless signal. The team developed their circuit using the same principles as those used in computers to monitor their internal power supply rails – to ensure the voltage does not dip below a certain threshold. The trigger signal uses a few picoWatts of energy, and a signal threshold level of 0,5 V, which is achievable from a passive sensor, just using the received wave energy.

The natural follow-on from this concept is that the trigger signal on some sensor applications could be derived from the event being monitored, such as a rapid increase in the sound or vibration levels of plant machinery. Also, for a security alarm, the movement of a hinge or similar could be sensed magnetically. Conventional power management techniques would be used to switch the sensor off once the data has been transmitted to, and acknowledged by, the monitoring systems.

Power storage

With solar and wind energy providing such a large part of the power used by the National Grid in certain areas, many ways are being researched to achieve power storage over the short term, such as 24 hours. There are already companies providing large storage systems with banks of conventional batteries, acting like very large uninterruptible power supply (UPS) systems. In Spain and the USA there are solar collector systems where the sun’s heat is concentrated onto a central collector, melting sodium salts: the heat is later used to drive a steam turbine. Further systems are being trialled where surplus energy is used to liquefy gases, or compress them in a high pressure chamber, later the stored gas can be used to drive a turbine generator.

A novel development of a battery cell reported recently is the use of a low cost electrolyte for use with aluminium and graphite electrodes. Dr Dai, at Stanford University, in collaboration with Taiwan’s Industrial Technology Research Institute, demonstrated such a battery powering a motorbike in 2015, but the electrolyte was expensive. The new electrolyte is 100 times less expensive – it is based on urea. Dr Dai sees this as a useful solution for storing solar power, even domestically – maybe new houses will have such a system underground, and call it a “Power storage pit”!

This article was first published in the April issue of “South African Instrumentation & Control”, a TechNews publication. This journal is kind enough to publish an article from Nick Denbow every month, as a report on stories of interest from Europe.

The value of Specialist Automation Suppliers

Engineers around the world are looking at how to benefit from the various solutions to the IIOT on offer: the article posted on 2 February entitled “How DCS Vendors see their IIOT future” covered the approaches being adopted by some of the major DCS vendors. This follow-up article, written for and first published in South Africa, in the Technews South African Instrumentation & Control Journal, March 2017, covers the approach of some of the smaller, specialist suppliers to their own selected sectors of the process industries.

While the major DCS suppliers try to work out how to provide revenue earning services from the growth of the IIOT, there are many specialist engineering product and systems suppliers who are investing in making their products easier for engineers to use in networks, and operate within the IIOT.

Most of these specialists are primarily focussed on the production of their valves, sensors, controllers or drives: this is their business – and they need their products to work with any interface the customer requires. Their expertise in interfacing their own products is the best available, they have an in-house systems knowledge base and capability. Most now offer this capability to their would-be product users as a service – offering a custom designed system incorporating the products. So look to these suppliers to offer the best engineering at an economic price, within their specialist field.

Typically these single-minded companies were set up by a design engineer with a good original product idea, and this has been developed and refined over the years. Often the company is family owned – and engineering / R&D investment takes precedence over profit distribution. Some such companies still exist in the USA, and a few in the UK, like JCB and Rolls Royce. Several specialist engineering product examples are found in suppliers originating from Germany, Scandinavia and middle Europe, where the culture seems to have encouraged their survival.

Beckhoff Automation

Arnold Beckhoff started his company in 1953: Beckhoff Automation now has a turnover of Euro 620 million, and employs 3350 people. The company implements open automation systems based on PC control technology, scalable from high performance Industrial PCs to mini PLCs, I/O and fieldbus components, plus drive technology and automation software. Supplying systems to many industries, Beckhoff works with and supplies components for over 15 major fieldbus systems. Motion control solutions solve single and multiple axis positioning tasks, and their servomotors offer combined power and feedback over a standard motor cable.

The Beckhoff TwinCAT 3 engineering and control automation software integrates real-time control with PLC, NC and CNC functions in a single package, and then all Beckhoff controllers are programmed using TwinCAT in accordance with IEC 61131-3. While the built-in TwinCAT condition monitoring libraries allow the on-site controllers to monitor the status of the sensors, to reduce downtime and maintenance costs, it also allows wider comparisons with connections to such cloud services as Microsoft Azure or Amazon Web Services. Other data connections are available, for example a smartphone app enables immediate local and mobile display of a machine‘s alarm and status messages.

Bürkert Fluid Control Systems

Bürkert was founded in 1946 by Christian Bürkert: it now has sales of Euro 412 million and employs over 2500 people. The product base is gas and liquid control valves, systems for measuring and controlling gases and liquids, plus sensors for monitoring such fluids, extending to complete automation solutions and fluid systems – this capability is known as their ‘Systemhaus’. While their products are now applied across many industries, their particular specialisations have been in sanitary, sterile and hygienic applications (food, beverage, biotech and pharmaceuticals), micro applications (medical, inkjet and beverage mixing/vending), and water treatment industries.

From the UK operation, Bürkert provide locally engineered solutions and systems for their pharma, food and brewery customers in particular. Locally made craft beers are a major growth area in the UK, and most start small, with no real automation. One example was Stroud Brewery, who needed to expand production by a factor of 5x, and preferably not increase their staff numbers: Bürkert designed a PLC system and intelligent control panel, which automated the temperature control of the cold and hot liquor tanks, and in the mash pan. In addition a system for controlling the run-off rate from the mash tun simply uses three separate Bürkert level sensors.

Bürkert also have developed their own ‘Device Cloud’, they call this ‘mySITE’. This collects data from Bürkert sensors around the world, using an on-site interface known as mxConnect – which can also accept data inputs from other sensors.

National Instruments

National Instruments was only started in 1976, in the USA, by Dr James Truchard and a colleague, who are still involved in the business. Now sales are $1320 million, and they have 7400 employees worldwide. Their declared Mission is to “equip scientists and engineers with systems that accelerate productivity, innovation, and discovery” – and their focus has always been to supply research establishments and engineers with open, software-centric platforms with modular, expandable hardware. This gives its own logistics problems, with 35,000 customers served annually.

It is difficult for me, as an outside observer, to relate the NI systems to an oil refinery or chemical plant application: but it comes into its own when the data handling grows in complexity – for example in pharmaceutical and biotech applications, and the sort of plants where engineers have a major input in monitoring the application. Mention cyclotron or Tokomak, CERN or the Large Hadron Collider, and NI and its LabView are embedded in their engineering control systems. All 108 collimators on the LHC are position controlled using LabView.

National Grid UK, which controls the distribution and transmission of electric power round the country, has adopted a control system based on the NI CompactRIO for the whole network. With many new power generating sources, HVDC connections, variable inputs from solar and wind farms, and the phasing out of major fossil fuelled plants, National Grid found that traditional measurement systems did not offer adequate coverage or response speed to handle these new challenges and risks. They adopted a platform, based on the CompactRIO, to provide more measurements – and also adapt with the evolving grid for generations to come. This interconnected network includes 136 systems, with 110 permanently installed in substations throughout England and Wales and 26 portable units that provide on-the-go spot coverage as needed.  The associated software systems provide their engineers with customized measurement solutions that can be upgraded in the future as new grid modernization challenges arise.

In terms of IoT developments, NI has just opened an Industrial IoT lab at the NI Austin HQ in the USA, to focus on intelligent systems that connect operational technology, information technology and the companies working on these systems. Many other companies are co-operating in this venture, like Cisco and SparkCognition, and the lab intends to foster such collaboration to improve overall interoperability. In addition NI has partnered with IBM and SparkCognition to collaborate on a condition monitoring and predictive maintenance testbed: this will use the SparkCognition cognitive analytics to proactively avoid unplanned equipment fatigue and failure of critical assets.

(c) Nick Denbow 2017

Power Industry Boiler Water Level Measurement Techniques

The March 2017 Inst Measurement and Control Technical Seminar evening will be hosted by Doosan Babcock in Manor Royal, Crawley, on Tuesday 21st March 2017.

This will be a tri-company, collaborative event, presented by Doosan Babcock, and also featuring contributions from Vega and TC-Fluid Control. It is aimed at providing attendees with a useful insight into industrial measurement application challenges in order to further their professional development knowledge.

Drum Level Control

The first presentation by Doosan Babcock will discuss Drum level measurement using DP Measurement and Hydrastep Measurement techniques.

Power station Steam Drum Level measurement is required for drum level control, Burner Management System (BMS) protection and Code compliance. Drum level is both a critical and difficult measurement to make. At steady state conditions, considerable turbulence in the drum can cause the level to fluctuate. A changing rate of water inflow and steam outflow adds to the potential for measurement error. The DP Measurement technique uses the difference in pressure between a head of water in an external reference column and the level in the drum. The density of water and steam vary appreciably with pressure, so the differential pressure obtained at any given level will vary as boiler pressure changes.

The Hydrastep technique detects the conductivity variation between the steam and the water. The electrode principle is an efficient system for measuring drum water levels.

Microwave Technology

Vega will explain how microwave technology can tackle a wide variety of applications associated with steam boilers. Non-contact or guided wave techniques have the ability to measure reliably, even with fluctuating temperatures up to 450C combined with pressures of up to 400 bar. Measurement is virtually unaffected by pressure and temperature changes. Top mounting makes installation and maintenance easy. In many cases microwave transmitters provide an alternative to legacy equipment for both solids and liquids. SIL qualification and boiler approval now enables microwave technology to  be used directly on steam boilers, with special modifications to compensate for saturated steam effects.

Visual/Glass and Boiler Steam Glass level gauges

untitledVisual/Glass and Boiler Steam Glass level gauges are a requirement on steam boilers for visual verification of the level control system, and will be discussed by TC-Fluid Control. Magnetic level gauges have many applications on and around the boiler, providing visual level indication whilst minimising potential leak paths, and can be used as an alternative to one of the glass level gauges on the boiler drum. Simple, robust technology provides a highly visible indication of process level at pressures of up to 400 bar and temperatures up to 450C.

Postscript: Wessex IMC Section meeting

Vega Controls will also give a talk to the IMC Wessex Section meeting on 15th March about the technology behind their 80GHz radar liquid level measurement systems. The talk will include live demonstrations, and takes place at the Forest Lodge Hotel, at Lyndhurst. A video is available that shows their new sensor.


Yokogawa EPMS and SCADA for the UK’s BPAL pipeline system

Yokogawa has received an order from the British Pipeline Agency Limited (BPAL) to supply a management and control system for one of the UK’s major multi-product fuel pipeline systems, to replace the current BPAL pipeline management and SCADA systems.

The BPAL UK pipeline system consists of three integrated multi-product fuel pipelines that link two, refineries, one at Ellesmere port on the Mersey near Liverpool and the other on the Thames in Essex, to inland distribution terminals. These pipelines, operational since 1969, meet over 50% of the jet fuel needs at London’s Heathrow and Gatwick airports, and are altogether some 650 km in length. BPAL, jointly owned by Shell and BP, are the operators of these pipeline systems (known as UKOP and WLWG), which are owned by a consortium of partners.

This order is for Yokogawa’s Enterprise Pipeline Management Solution (EPMS), which will manage functions such as delivery scheduling and oil storage, and their Fast-Tools SCADA software, to monitor and control the oil pipelines and related equipment such as compressors. The EPMS uses specific gas and liquid applications that enable a pipeline operator to manage delivery contracts in a time and energy efficient manner. With the SCADA system covering monitoring and control, the EPMS will integrate the management of the SCADA data. Delivery of these systems will be completed by March 2018.

Further order for UAE Power and Desalination Station

Yokogawa also recently received its first ever DCS order for a power and desalination plant in the UAE. The company is to supply the Sharjah Electricity & Water Authority (SEWA) with control and safety systems, plus field equipment, for Units 7 and 8 at the Layyah Power and Desalination Station.

Each unit comprises a 75 MW oil and gas-fired thermal power plant and a 27,000 m3 per day multi-stage flash (MSF) desalination plant: a technology that involves the heating and evaporation of seawater in multiple vacuum distillation tanks to produce steam, which is then condensed to produce fresh water. Such systems are energy-efficient because they use the heat from the steam that is created in the vacuum distillation tanks.

Yokogawa Middle East & Africa will deliver the CentumVP integrated production control system for the boiler, turbine governor, turbine protection system and the desalination plant at each of these units, as well as the ProSafe-RS safety instrumented system for burner management and boiler protection. The field instruments will include Yokogawa products such as the DPharp EJA series differential pressure and pressure transmitters, continuous emission monitoring systems (CEMS), and steam and water analysis systems (SWAS). In addition to being responsible for engineering, the company will provide support for the installation and commissioning of these systems, with all work scheduled for completion by September 2017.

Demand for electricity and water is soaring throughout the Middle East due to their rapid economic growth. Power and desalination plants that rely on the region’s abundant oil and gas resources make up an important part of this region’s infrastructure.

30 years on, and Chernobyl is covered

There are many old physicists who would remember the day of the Chernobyl accident back in 1986. I remember the hairs on the back of my neck standing on end, when driving home and hearing that the radiation detectors on the Swedish (or maybe Finnish?) nuclear reactor power stations had gone into alarm, because of the incoming radiation fall-out detected.

Then there were the radio-active reindeer, after eating the moss on rocks in Scandinavia, and worse still, Welsh lamb with green dye marks to indicate ‘unfit for human consumption’. Working on a lot of development projects for sensors to be used in the BNFL Sellafield site, it was interesting to see how sheep with green dye marks seemed to be collected and placed in the fields near that site…… nothing if not a subtle comment by the local farmers.

European Reconstruction

The latest news this last month was that the “Chernobyl Arch”, a containment structure designed to enclose the damaged reactor and upgrade the site finally into an environmentally safe and secure state, was moved into position in November. The structure was built on site as part of an international programme, led by the European Bank for Reconstruction and Development (EBRD), and moved to its final position along a 327 meter track, to cover the previous makeshift shelter placed over the exposed core soon after 1986. No mean feat with a weight of 36,000 tonnes. A video of the move and installation is visible on


The constructors

EBRD advise that the structure was built by Novarka, a consortium of the French construction firms VINCI Construction and Bouygues Construction. Work started in 2010, and the cost was Euro 1.5Bn. The arch itself is the largest moveable land-based structure ever built, with a span of 257 metres, length of 162 metres, height of 108 metres. With the sealed installation due for completion by November 2017, it will make the accident site safe, with a lifetime of 100 years; allow for the eventual dismantling of the makeshift Russian built 1986 shelter, and allow the management of the radioactive waste inside. (All assuming no local conflicts blow the place up!)


EBRD manages the Chernobyl Shelter Fund, and is the major contributor to the Euro 2.1Bn programme: more than Euro 1.5 billion has been contributed from 45 donors to date. This is presumably a good example of International and European co-operation and common sense. With Euro 600m still required, one hopes that the neighbouring countries affected can spare a little more? Chernobyl is in the Ukraine, but the original reactor was of Russian design.

A personal opinion is that this is the sort of project that European and International co-operation should be all about, and being one major build, it probably has not resulted in excessive syphoning off of the funds into dubious pockets!


PS: I’m also old enough to remember the expressions on the faces of my Mum and Dad when they heard that John Kennedy had been assassinated!

ABB 1.2 Million Volt Transformer

ABB has developed, manufactured and energized a 1,200-kilovolt (kV) ultra-high-voltage power transformer to support India’s plans to build a 1,200 kV transmission system, supplementing the existing 400 kV and 800 kV transmission grid as demand for electricity increases. The transformer was manufactured and tested at ABB’s state-of-the-art Vadodara facility in India.

Ultrahigh voltage (UHV) 1,200 kV alternating current (AC) power

Ultrahigh voltage (UHV) 1,200 kV alternating current (AC) power transformer installed at Bina site – Level 2

This 1.2 million volt transformer represents the highest alternating current voltage level in the world and is installed at the national test station at Bina, Madhya Pradesh in Central India, as part of a collaborative initiative by the country’s central transmission utility, Power Grid Corporation of India Limited (POWERGRID).

India’s geographic span means that resource-rich generation centers and urban and industrial load centers are often far apart therefore requiring efficient power transmission. Along with the country’s commitment to enhance the contribution of renewables, these factors are driving the development of an ultra-high-voltage transmission infrastructure.

The 1,200kV transmission system will help strengthen the grid and enhance load capacity up to 6,000 megawatts (MW). Transmission at higher voltages enables larger amounts of electricity to be transported across longer distances, while minimizing losses. At the same time, less space is needed for fewer transmission lines, which reduces the environmental impact and overall cost.

“ABB has a pioneering track record in India and this 1,200 kV achievement is another concrete example of our commitment to support the country in the ongoing development of its power infrastructure” said Claudio Facchin, President of ABB’s Power Grids division. “This project also underlines how ABB delivers differentiated value through innovation and customer collaboration, both key elements of our Next Level strategy.”

In addition to the transformer, ABB has also developed a 1,200 kV circuit breaker that was previously commissioned at the test station. This was the first hybrid gas insulated switchgear in the world to be energized at this voltage level. The uniquely designed circuit breaker is safely housed with the disconnector in a tank filled with insulating gas – resulting in a space saving potential of up to 60 percent compared with conventional designs.