False alarms from safety sensors?

So I do know about sensors and control systems, from the supplier point of view. But maybe like many suppliers I’ve only been on site to troubleshoot a sensor that is reported to be giving incorrect data. So someone else made the decision to question the validity of the sensor outputs.

These days, the nearest I get to regular sensor monitoring is at home, typically with smoke alarms, a CO monitor, and a flammable gas alarm. Plus the plant manager, my wife, is always demanding an immediate solution to any alarm system going off, to continue production.

The problem

A flammable gas alarm was positioned above the gas hob: perhaps in retrospect not the best place, as the instructions said humidity and steam should be avoided. But very quickly we realised that the detector was not very tolerant of any wine added to dishes being cooked on the hob. Then, surprisingly, it alarmed whenever we had bread dough baking in the (electric) oven. Since the detector was said to be set to alarm at 25% of the LEL this was surprising.

DSCN6511

The instruction came down – ‘Get me a switch in that alarm circuit, so I can switch the piercing noise of the alarm off!’ So, there was my solution, and a task, so that was done. I did not think it through any further.

Time passes

This system worked well for maybe 3 years. The alarm switch changed power from the alarm to a lamp over the worktop, so we knew to switch it back on after a problem event. But such sensors must have a life, and so when the alarm started going off when the kettle boiled and steam drifted up past the detector, I thought the unit was failing. There were then several late evening alarms, for no apparent reason, and we could not smell any gas (it is difficult to detect these days), nor see anything untoward. Like every engineer I guess, I felt the sensor, to find it very hot. This seemed to confirm the problem, that the sensor was failing, so take the thing out – ‘it was not that hot before!’ Something had changed.

Six months later, this Summer, we had a new gas meter – a Smart unit – installed on the domestic gas supply. Ultrasonic measurement of the flow, wifi connection to the indoor display, and mobile network reporting usage figures to the supplier. That would all be great, except the fitter refused to reconnect the gas to the house, because of a slight leak detected indoors. We had to call out a plumber to deal with our in-house problems. Good job it was Summer, as that took over a week.

Finding the gas leak

The leak was located as somewhere in the piping to the gas hob. The plumber tightened up the connections under the hob, and repeated the pressure loss checks. Still a slight leak, but within allowable tolerances. OK, so he checks once more, to be sure, and starts his paperwork. A last twist of the 90 degree bend directly on the hob (supplied by the Chinese supplier) produced an interesting result: the threaded part of this connector sheared off, almost in two half-round pieces. It looks like steel, but low grade steel, and showed a brittle type fracture all around the fitting.

Presumably the crack that had been there before, allowing a slow leak, had led to the fracture on tightening the connection. That was installed 10 years before, and no-one had done any checks of that or the system post installation. OK, I had never had the systems tested for gas leaks.

What had happened?

The conclusion at this point was that the slow leak presumably collected gas in the lower cupboards, and when this escaped it combined with the wine vapours to trip the alarm. Possibly the steam from the kettle just accelerated the rise of the gas past the detector. The detector was presumably a Pellistor, and got hot because it was burning the gas off. The dough rising in the oven? I don’t know much about bread and dough – but the leak was directly above the oven, so maybe the gas and air, warmed from the sides of the oven, helped the gas rise up past the detector. If that fitting had actually failed totally one night, there would have been a major blast, as I had removed the gas detector.

We now have installed a new detector, further from the cooking (3 metres). Plus the old one is re-installed, as a back-up unit: it is working OK still, next to the boiler. The bad news: the new alarm went off last weekend, when simmering a Paella laced with white wine….

Yesterday the plant manager produced a batch of dough and made bread. Both flammable gas alarms went off, first the unit 3 metres away then the old reserve unit, now even further away in the utility room, with the boiler.

Legislation

In any rented accommodation the landlord has to have a gas system safety check once a year. Because we own our own house there is no such requirement, and the boiler service man, who checks the gas boiler and heating system once a year, is not required to, and does not include, a system gas leak test in his inspection.

Product or system failure?

The gas hob was made by Proline, and installed around 8 years ago by a registered installer. It was a Chinese manufactured unit supplied by Comet as a low-cost own-brand hob to many retail outlets in the UK. The 90 degree bend that failed was supplied as a part of the hob, the gas inlet port. It is not steel, it could be an aluminium or zinc alloy. It appears the design was such that this port could be stressed during installation or tightening, as the bend itself would not rotate to suit the angle of the delivery pipework. It seems the break was on the hob side of the fitting. A combination of a poor quality fitting and a poor design.

The flammable gas alarm seems to work OK in detecting natural gas, but is even more sensitive to alcohol vapours, bread and dough making, and using any window cleaning spray that has any hydrocarbons in the fluid. So beware of using them in a brewery, distillery, bakery, bread shop, pub, restaurant and so on!

There was undoubtedly a small gas leak, around the hob, which has now stopped. Possibly this was from the 90 degree bend fitting, which then completely broke apart on tightening the joint. It remains possible that this failure was an accident waiting to happen.

The domestic plant manager is none too pleased at the moment. So do I leave the sensors installed, take both or one of them away, or fit switches to suppress the noise and turn off the alarm(s)?

The value of Specialist Automation Suppliers

Engineers around the world are looking at how to benefit from the various solutions to the IIOT on offer: the article posted on 2 February entitled “How DCS Vendors see their IIOT future” covered the approaches being adopted by some of the major DCS vendors. This follow-up article, written for and first published in South Africa, in the Technews South African Instrumentation & Control Journal, March 2017, covers the approach of some of the smaller, specialist suppliers to their own selected sectors of the process industries.

While the major DCS suppliers try to work out how to provide revenue earning services from the growth of the IIOT, there are many specialist engineering product and systems suppliers who are investing in making their products easier for engineers to use in networks, and operate within the IIOT.

Most of these specialists are primarily focussed on the production of their valves, sensors, controllers or drives: this is their business – and they need their products to work with any interface the customer requires. Their expertise in interfacing their own products is the best available, they have an in-house systems knowledge base and capability. Most now offer this capability to their would-be product users as a service – offering a custom designed system incorporating the products. So look to these suppliers to offer the best engineering at an economic price, within their specialist field.

Typically these single-minded companies were set up by a design engineer with a good original product idea, and this has been developed and refined over the years. Often the company is family owned – and engineering / R&D investment takes precedence over profit distribution. Some such companies still exist in the USA, and a few in the UK, like JCB and Rolls Royce. Several specialist engineering product examples are found in suppliers originating from Germany, Scandinavia and middle Europe, where the culture seems to have encouraged their survival.

Beckhoff Automation

Arnold Beckhoff started his company in 1953: Beckhoff Automation now has a turnover of Euro 620 million, and employs 3350 people. The company implements open automation systems based on PC control technology, scalable from high performance Industrial PCs to mini PLCs, I/O and fieldbus components, plus drive technology and automation software. Supplying systems to many industries, Beckhoff works with and supplies components for over 15 major fieldbus systems. Motion control solutions solve single and multiple axis positioning tasks, and their servomotors offer combined power and feedback over a standard motor cable.

The Beckhoff TwinCAT 3 engineering and control automation software integrates real-time control with PLC, NC and CNC functions in a single package, and then all Beckhoff controllers are programmed using TwinCAT in accordance with IEC 61131-3. While the built-in TwinCAT condition monitoring libraries allow the on-site controllers to monitor the status of the sensors, to reduce downtime and maintenance costs, it also allows wider comparisons with connections to such cloud services as Microsoft Azure or Amazon Web Services. Other data connections are available, for example a smartphone app enables immediate local and mobile display of a machine‘s alarm and status messages.

Bürkert Fluid Control Systems

Bürkert was founded in 1946 by Christian Bürkert: it now has sales of Euro 412 million and employs over 2500 people. The product base is gas and liquid control valves, systems for measuring and controlling gases and liquids, plus sensors for monitoring such fluids, extending to complete automation solutions and fluid systems – this capability is known as their ‘Systemhaus’. While their products are now applied across many industries, their particular specialisations have been in sanitary, sterile and hygienic applications (food, beverage, biotech and pharmaceuticals), micro applications (medical, inkjet and beverage mixing/vending), and water treatment industries.

From the UK operation, Bürkert provide locally engineered solutions and systems for their pharma, food and brewery customers in particular. Locally made craft beers are a major growth area in the UK, and most start small, with no real automation. One example was Stroud Brewery, who needed to expand production by a factor of 5x, and preferably not increase their staff numbers: Bürkert designed a PLC system and intelligent control panel, which automated the temperature control of the cold and hot liquor tanks, and in the mash pan. In addition a system for controlling the run-off rate from the mash tun simply uses three separate Bürkert level sensors.

Bürkert also have developed their own ‘Device Cloud’, they call this ‘mySITE’. This collects data from Bürkert sensors around the world, using an on-site interface known as mxConnect – which can also accept data inputs from other sensors.

National Instruments

National Instruments was only started in 1976, in the USA, by Dr James Truchard and a colleague, who are still involved in the business. Now sales are $1320 million, and they have 7400 employees worldwide. Their declared Mission is to “equip scientists and engineers with systems that accelerate productivity, innovation, and discovery” – and their focus has always been to supply research establishments and engineers with open, software-centric platforms with modular, expandable hardware. This gives its own logistics problems, with 35,000 customers served annually.

It is difficult for me, as an outside observer, to relate the NI systems to an oil refinery or chemical plant application: but it comes into its own when the data handling grows in complexity – for example in pharmaceutical and biotech applications, and the sort of plants where engineers have a major input in monitoring the application. Mention cyclotron or Tokomak, CERN or the Large Hadron Collider, and NI and its LabView are embedded in their engineering control systems. All 108 collimators on the LHC are position controlled using LabView.

National Grid UK, which controls the distribution and transmission of electric power round the country, has adopted a control system based on the NI CompactRIO for the whole network. With many new power generating sources, HVDC connections, variable inputs from solar and wind farms, and the phasing out of major fossil fuelled plants, National Grid found that traditional measurement systems did not offer adequate coverage or response speed to handle these new challenges and risks. They adopted a platform, based on the CompactRIO, to provide more measurements – and also adapt with the evolving grid for generations to come. This interconnected network includes 136 systems, with 110 permanently installed in substations throughout England and Wales and 26 portable units that provide on-the-go spot coverage as needed.  The associated software systems provide their engineers with customized measurement solutions that can be upgraded in the future as new grid modernization challenges arise.

In terms of IoT developments, NI has just opened an Industrial IoT lab at the NI Austin HQ in the USA, to focus on intelligent systems that connect operational technology, information technology and the companies working on these systems. Many other companies are co-operating in this venture, like Cisco and SparkCognition, and the lab intends to foster such collaboration to improve overall interoperability. In addition NI has partnered with IBM and SparkCognition to collaborate on a condition monitoring and predictive maintenance testbed: this will use the SparkCognition cognitive analytics to proactively avoid unplanned equipment fatigue and failure of critical assets.

(c) Nick Denbow 2017

Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.

Remaining Useful Life analysis via the Senseye cloud @ProcessingTalk #PAuto

Senseye, the Uptime-as-a-Service specialists, has launched a new version  of its automatic condition monitoring and prognostics software, which offers their ‘Remaining Useful Life’ calculations to all customers – whether they operate 10 or 10,000 assets. Senseye is unique in offering automated condition monitoring combined with Remaining Useful Life analysis.

Knowing the Remaining Useful Life of machinery helps their industrial clients to implement cost-effective predictive maintenance, typically leading to a 10-40% reduction in maintenance costs and a parallel downtime reduction of 30-50%. The software has already been adopted by a major automotive OEM, helping them to avoid their downtime cost – which is over $2m per hour.

Up until now, the Remaining Useful Life measurement has been an academic focus, accessible only to those with extensive data engineering skills.  The patent-pending Senseye technology makes it accessible to all. The automated analysis is designed to be easy to use by maintenance teams and managers and is backed by Senseye’s extensive background in condition monitoring, based on experience in the highly competitive aerospace and defence industries.

Robert Russell, Senseye CTO commented: “Being able to see the Remaining Useful Life of machinery – without requiring expert input – empowers site maintenance engineers to get maximum value from their condition monitoring solutions”.

Trusted by a number of Fortune 100 companies, Senseye offers a leading cloud-based condition monitoring and prognostics product. Their award-winning solutions are usable from day one and available as a simple subscription service, enabling customers to rapidly expand their predictive maintenance programs.

Yokogawa invests in IIOT cybersecurity

Yokogawa has made some significant investments in the resources needed to develop future techniques for IIOT cybersecurity, first with a new engineering centre to be established in California, and second, by investing US$900,000 into Bayshore Networks, as a partner in a current round of venture capital funding.

New IIOT Division

The new Yokogawa Architecture Development Division in California will pursue the development of the core technologies needed to establish the robust and flexible architecture required to improve operational efficiency and productivity when using the IIoT. The new division will function as a unit of the Yokogawa Marketing Headquarters Business Development Centre, and will keep up with the new technologies being developed every day in the IIoT sector – as well as facilitate close co-ordination with partner companies. The West Coast of the USA is therefore the correct location for this work. The division will be staffed by engineers from Yokogawa who have an extensive knowledge of Yokogawa systems and services, and locally recruited engineers who are conversant in a range of IT fields. The first employees of the division have been located at the local engineering office of a partner company since November 2016, but their own offices are scheduled to open in April 2017. Subsequently, the division will add functions for planning services that use the IIoT and cloud computing, and it is expected that the number of staff will be increased to around 50 over the next five years.

Investment in Bayshore

A parallel press release from Yokogawa explains that there has also been a $900k strategic equity investment into Bayshore Networks, a company established in 2012 that has gained rapid recognition for its expertise in cybersecurity.

Mike Dager, CEO of Bayshore, commented “Yokogawa shares our vision for a secure industrial internet of things enabling new applications that will increase safety, optimize processes, and drive efficiencies. We are proud and excited to partner with such a renowned global leader in industrial controls.”

This Yokogawa investment is part of the recent US$6.6M Series A funding for Bayshore, arranged by Trident Capital Cybersecurity, and its existing angel investors.

Trident Capital

Trident Capital Cybersecurity is a venture capital firm that invests in early-stage companies leveraging emerging technologies in cybersecurity. The firm is a spinout of (or maybe the successor to) Trident Capital, which in 1998 became one of the pioneers of cybersecurity venture capital investing. Renowned as the venture capital firm with the most valuable network of cybersecurity relationships, Trident Capital Cybersecurity also relies on input from a 40–person Cybersecurity Advisory Council, consisting of industry CEOs, customers and former top-level government leaders.

“We led the Series A Investment because Bayshore has been recognized as an innovator and early leader in an emerging cybersecurity segment that is largely untapped to date,” said J. Alberto Yépez, managing director of Trident Capital Cybersecurity. “We are honoured to have Yokogawa join us in supporting the development of the cutting-edge Bayshore technology and business.”

The Trident Capital Cybersecurity website claims 28 cybersecurity investments and 16 successful exits. These have included the Solera acquisition by BlueCoat in 2013, the Qualys IPO in 2012, the acquisition of Accertify by American Express in 2010, the Sygate acquisition by Symantec in 2006 and the Signio acquisition by VeriSign in 2000.

The Bayshore technology

The Bayshore cloud-based software, called the Bayshore IT/OT Gateway, provides IT departments with visibility into OT (Operational Technology) infrastructure, networks, applications, machines and workers.  These OT networks are undergoing transformation and require services traditionally available for IT networks, such as secure remote access and analytics. Bayshore provides immediate value by preventing OT process disruptions and enhancing operational efficiency and business continuity.   The software is distinguished by extremely granular inspection and filtering of network flows – all the way down to machine sensor values – and the ability to provide security enforcement and application segmentation and isolation via flexible, rapidly deployed policies.  The Bayshore policy engine is capable of supporting common industrial protocols and quickly adapting to new and proprietary protocols.

These capabilities are built from the ground up for Industrial Internet and provide Bayshore customers with future-proof, cloud-based solutions that are complementary to legacy hardware-based industrial firewalls. Designed for IT perimeter security, firewalls look for IP addresses and ports, which means they block attacks according to standard Internet parameters.  Because industrial cyber-attacks are typically based on granular machine instructions that alter sensor values, the unique Bayshore technology is well positioned to detect industrial attacks that are often overlooked by other security technologies.

Bayshore has strategic alliances with leading technology companies including AT&T, BAE Systems, Cisco Systems, and VMware. It is currently based in New York, but intends to relocate the HQ to Bethesda, Maryland. No engineering base is quoted as existing in California.

2017 Business plan comes together

satoru-kurosu-med

Earlier, Yokogawa had announced the completion of the acquisition of Soteica Visual Mesa (SVM), the leading energy management technology provider, which will be integrated into KBC Advanced Technologies (acquired in April 2016) alongside “Data as a Service” (DaaS) provider Industrial Knowledge (acquired December 2015). Satoru Kurosu, executive vice president and head of Yokogawa’s Solutions Service Business Headquarters, commented that these moves delivered on a number of the key objectives of the Yokogawa Transformation 2017 mid-term business plan: “Key strategic objectives of Yokogawa’s Transformation 2017 plan are to expand the solution service business, focus on customers, and co-create new value with customers through innovative technologies and services.”

(c) ProcessingTalk

Yokogawa offers ISA100 vibration sensor

Yokogawa Electric Corporation has announced the development and release of an ISA100 field wireless vibration sensor, which combines a fast data update rate with a long battery life. By providing real-time updates of the vibration levels in plant facilities, the new sensor helps users quickly detect equipment anomalies, enabling predictive maintenance.

Development background

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Vibration sensors are used for the condition monitoring and predictive maintenance of plant machinery such as compressors, pumps, and motors. Conventional methods for monitoring vibration include the use of vibration sensors that rely on wired communications with a host system, supplemented by patrols by maintenance staff to collect vibration data. Wireless vibration sensors offer the same capabilities, with a much reduced installation cost and improved versatility: plus with the increasing adoption of ISA100 wireless technology across process plants, these sensors are a simple addition to such standard systems.

Since releasing the world’s first ISA100 Wireless-based field wireless devices and wireless systems, Yokogawa has expanded its line-up of field wireless devices that measure temperature, pressure, flow rate, and the like. This new vibration sensor will meet the  customer requirement for a device that can provide the fast updates on vibration levels needed to detect anomalies at an early stage.

Product features

ISA100 Wireless is a technology that is based on the ISA100.11a standard. It includes ISA100.11a-2011 communications, an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

The principal components of this field wireless vibration sensor are the FN510 field wireless multifunction module, the LN01 piezoelectric type acceleration sensor, and the FN110 field wireless communication module. Via a gateway device, the FN510 uses the ISA100 Wireless communications protocol to exchange data with a host-level system such as the existing plant DCS. The data collected with this vibration sensor enables plant operators and maintenance staff to monitor vibration levels in real time. Both standard industrial and explosion-proof/intrinsically safe sensor types are available, with approvals to FM, CSA (cFM), ATEX and IECEx.

yokogawa-isa100-wirelesstm-based-field-wireless-vibration-sensor

The LN01 sensor is the small item at the bottom of the picture, presumably! The box provides the plant mounted protection for the FN510

The LN01 sensor monitors vibration in the frequency range 10Hz to 10kHz, with an update rate of 10 seconds minimum. Measurements are provided of vibration velocity up to 160mm/sec (6″/ sec), and acceleration up to 300m/sec(1 ft/sec/sec). On site the sensor has a cable connection to the FN510 free-standing field wireless multifunction module, the cable is typically up to 10m long. Battery life can be as long as 10 years, if the update rate is set at once per minute.

The Yokogawa approach to field wireless sensors

Yokogawa says they will continue to expand their lineup of ISA100 Wireless transmitters and other devices such as adaptors to develop best-in-class solutions that provide higher value to customers, and promote the use of field wireless technologies.

Their current ISA100 presentation includes their own pressure, temperature and flow sensors, plus other sensors from third parties, for example the Draeger GasSecure flammable gas detector, and the Spirax Sarco STAPS steam trap monitoring system. They have also previously featured products from the Bently Nevada vibration monitoring systems, which also use ISA100 wireless communications: the ISA100 system does permit the frequency spectrum from such devices to be transmitted to dedicated monitoring analysers. The Yokogawa development of the LN01 accelerometer sensor will effectively complement such systems.

(c) ProcessingTalk.info

SolutionsPT adds SCADA and HMI – from Citect – to its Wonderware offering!

SolutionsPT have issued a press release covering an expansion of their Wonderware offering from Schneider, to add SCADA and HMI Solutions. This reads as follows:

Industrial IT solutions specialist SolutionsPT has become the UK and Ireland distributor for world-class automation solutions provider Citect, strengthening its SCADA product portfolio.

Renowned for the development and application of SCADA and HMI solutions, the Citect brand is owned by Schneider Electric, and its range of products includes CitectSCADA, CitectHMI and CitectHistorian.

Schneider Electric already has a longstanding relationship with SolutionsPT, which has been the sole UK and Ireland distributor for its Wonderware suite of products since 1991. As a result, SolutionsPT was seen as the logical choice to take on the distribution of Schneider Citect software in the UK and Ireland because of its existing focus on, and technical expertise in, the automation sector.

To support the new product offering, SolutionsPT has promoted Anne Fletcher to the role of Citect Product Manager. Anne has been with SolutionsPT for six years, most recently working as Channel Relationship Manager.  Anne will be responsible for championing the Citect product set amongst SolutionsPT end users, OEMs and System Integrators to enhance the profitability and penetration of Citect products.

Martin Walder, VP Industry UK & Ireland, Schneider Electric, said: “Collaborating on sales and utilising SolutionsPT to support our Citect product will allow us to improve the service to Citect customers and enhance the breadth of our software offering. This deal will allow us to offer Historian, Batch Management and MES functionality as well as our targeted SCADA and HMI offerings. SolutionsPT is a well-established distributor and the right partner to work with to develop the overall market for Schneider software products.”

The press release ends there.

The outsider view

It is interesting to consider the background to this release, which on the face of it, is a little confusing, when you try to see it from the Schneider viewpoint. SolutionsPT is a long term independent but major Wonderware distributor and installer into UK and Irish industry. The relationship with Schneider only commenced after Schneider acquired Invensys plc: the acquisition process started with the takeover offer made in July 2013. This deal was not finalised until later in the year, after September.

In September 2013, Invensys plc, already subject to the acquisition offer from Schneider, acquired US based InduSoft, which was quoted as “a provider of HMI and embedded intelligent device software for the automation market”. This did indeed seem surprising, since Schneider had acquired a major HMI/SCADA software supplier when it bought Citect, many years before, in 2006. So why would the fairly inevitable Schneider/Invensys combined operation require two such similar companies?

This exercised several reports and analysis presented in the Industrial Automation Insider in late 2013, and some similar blog posts on http://www.ProcessingTalk.info.

However, today, in 2016, the InduSoft website promotes their Web Studio 8.0 as SCADA/HMI software for Intuitive Dashboards, OEE and the Internet of Things, under the brand of Wonderware InduSoft. Their UK distribution is quoted as dealt with by the InduSoft office in Germany. The original UK agent for InduSoft prior to 2013 was a private company, AdProSys, run by Mike Bradshaw, an ex-Wonderware employee, who then joined InduSoft as an employee in September 2013 to promote direct and channel sales of InduSoft throughout Europe. He then left InduSoft in July 2104.

With the InduSoft product being Wonderware branded, surely SolutionsPT would be selling it, as a part of their Wonderware package:  but the SolutionsPT website solidly refuses to recognize InduSoft as a search term….

The logic of this suggest that SolutionsPT have done their homework rigorously, and have decided that the Wonderware-Citect combination is the best match, to meet their market requirement for HMI/SCADA in Wonderware based applications.

©Processingtalk.info