The value of Specialist Automation Suppliers

Engineers around the world are looking at how to benefit from the various solutions to the IIOT on offer: the article posted on 2 February entitled “How DCS Vendors see their IIOT future” covered the approaches being adopted by some of the major DCS vendors. This follow-up article, written for and first published in South Africa, in the Technews South African Instrumentation & Control Journal, March 2017, covers the approach of some of the smaller, specialist suppliers to their own selected sectors of the process industries.

While the major DCS suppliers try to work out how to provide revenue earning services from the growth of the IIOT, there are many specialist engineering product and systems suppliers who are investing in making their products easier for engineers to use in networks, and operate within the IIOT.

Most of these specialists are primarily focussed on the production of their valves, sensors, controllers or drives: this is their business – and they need their products to work with any interface the customer requires. Their expertise in interfacing their own products is the best available, they have an in-house systems knowledge base and capability. Most now offer this capability to their would-be product users as a service – offering a custom designed system incorporating the products. So look to these suppliers to offer the best engineering at an economic price, within their specialist field.

Typically these single-minded companies were set up by a design engineer with a good original product idea, and this has been developed and refined over the years. Often the company is family owned – and engineering / R&D investment takes precedence over profit distribution. Some such companies still exist in the USA, and a few in the UK, like JCB and Rolls Royce. Several specialist engineering product examples are found in suppliers originating from Germany, Scandinavia and middle Europe, where the culture seems to have encouraged their survival.

Beckhoff Automation

Arnold Beckhoff started his company in 1953: Beckhoff Automation now has a turnover of Euro 620 million, and employs 3350 people. The company implements open automation systems based on PC control technology, scalable from high performance Industrial PCs to mini PLCs, I/O and fieldbus components, plus drive technology and automation software. Supplying systems to many industries, Beckhoff works with and supplies components for over 15 major fieldbus systems. Motion control solutions solve single and multiple axis positioning tasks, and their servomotors offer combined power and feedback over a standard motor cable.

The Beckhoff TwinCAT 3 engineering and control automation software integrates real-time control with PLC, NC and CNC functions in a single package, and then all Beckhoff controllers are programmed using TwinCAT in accordance with IEC 61131-3. While the built-in TwinCAT condition monitoring libraries allow the on-site controllers to monitor the status of the sensors, to reduce downtime and maintenance costs, it also allows wider comparisons with connections to such cloud services as Microsoft Azure or Amazon Web Services. Other data connections are available, for example a smartphone app enables immediate local and mobile display of a machine‘s alarm and status messages.

Bürkert Fluid Control Systems

Bürkert was founded in 1946 by Christian Bürkert: it now has sales of Euro 412 million and employs over 2500 people. The product base is gas and liquid control valves, systems for measuring and controlling gases and liquids, plus sensors for monitoring such fluids, extending to complete automation solutions and fluid systems – this capability is known as their ‘Systemhaus’. While their products are now applied across many industries, their particular specialisations have been in sanitary, sterile and hygienic applications (food, beverage, biotech and pharmaceuticals), micro applications (medical, inkjet and beverage mixing/vending), and water treatment industries.

From the UK operation, Bürkert provide locally engineered solutions and systems for their pharma, food and brewery customers in particular. Locally made craft beers are a major growth area in the UK, and most start small, with no real automation. One example was Stroud Brewery, who needed to expand production by a factor of 5x, and preferably not increase their staff numbers: Bürkert designed a PLC system and intelligent control panel, which automated the temperature control of the cold and hot liquor tanks, and in the mash pan. In addition a system for controlling the run-off rate from the mash tun simply uses three separate Bürkert level sensors.

Bürkert also have developed their own ‘Device Cloud’, they call this ‘mySITE’. This collects data from Bürkert sensors around the world, using an on-site interface known as mxConnect – which can also accept data inputs from other sensors.

National Instruments

National Instruments was only started in 1976, in the USA, by Dr James Truchard and a colleague, who are still involved in the business. Now sales are $1320 million, and they have 7400 employees worldwide. Their declared Mission is to “equip scientists and engineers with systems that accelerate productivity, innovation, and discovery” – and their focus has always been to supply research establishments and engineers with open, software-centric platforms with modular, expandable hardware. This gives its own logistics problems, with 35,000 customers served annually.

It is difficult for me, as an outside observer, to relate the NI systems to an oil refinery or chemical plant application: but it comes into its own when the data handling grows in complexity – for example in pharmaceutical and biotech applications, and the sort of plants where engineers have a major input in monitoring the application. Mention cyclotron or Tokomak, CERN or the Large Hadron Collider, and NI and its LabView are embedded in their engineering control systems. All 108 collimators on the LHC are position controlled using LabView.

National Grid UK, which controls the distribution and transmission of electric power round the country, has adopted a control system based on the NI CompactRIO for the whole network. With many new power generating sources, HVDC connections, variable inputs from solar and wind farms, and the phasing out of major fossil fuelled plants, National Grid found that traditional measurement systems did not offer adequate coverage or response speed to handle these new challenges and risks. They adopted a platform, based on the CompactRIO, to provide more measurements – and also adapt with the evolving grid for generations to come. This interconnected network includes 136 systems, with 110 permanently installed in substations throughout England and Wales and 26 portable units that provide on-the-go spot coverage as needed.  The associated software systems provide their engineers with customized measurement solutions that can be upgraded in the future as new grid modernization challenges arise.

In terms of IoT developments, NI has just opened an Industrial IoT lab at the NI Austin HQ in the USA, to focus on intelligent systems that connect operational technology, information technology and the companies working on these systems. Many other companies are co-operating in this venture, like Cisco and SparkCognition, and the lab intends to foster such collaboration to improve overall interoperability. In addition NI has partnered with IBM and SparkCognition to collaborate on a condition monitoring and predictive maintenance testbed: this will use the SparkCognition cognitive analytics to proactively avoid unplanned equipment fatigue and failure of critical assets.

(c) Nick Denbow 2017

Radio system for simple temperature sensors

Signatrol, the Tewkesbury (UK) based manufacturer of the SpyDaq wireless temperature and humidity data logging system, has been awarded a UK patent for some of the communications aspects of SpYdaq, that make their system reliable, yet simple and cost efficient for pharma and food industry monitoring.

Initially designed to monitor and record temperature and humidity in buildings and storage areas, SpYdaq enables easy compliance with HACCP, EN12830, FDA CFR21 Part 11 and other relevant standards – where careful inviolate monitoring of storage conditions is required for quality reasons and to comply with legislation.

Unlike other similar systems on the market, SpYdaq features a unique high redundancy data package, specifically designed by Signatrol and it is this that has been recognized by the Patents Office and the award of UK Patent number 2479520.

SpYdaq monitors key parameters and transmits them, via a licence-free radio band, to a base station which then makes the data available via bespoke display and analysis software, using either an Intranet or the Internet. Using sensors linked by radio means that installation is quick and easy. The transmitters ‘sleep’ and then wake up at defined intervals to transmit the data. Using this method means that the transmitters are purely transmitters and not transceivers, thus reducing the cost and complexity of the system.

SpyDaq wireless from Signatrol

SpYdaq base station and sensors: this unit uses mobile phone links to the cloud for data monitoring and recording

A potential problem would arise with this approach when two or more transmitters try to transmit at the same time, and signals collide, resulting in loss of data. Signatrol has developed its unique communication system to ensure that in the event of a collision no data will be lost. In fact, for a fully populated system, the likelihood of losing a single reading is once in every 67 years.

Brian Turner, Managing Director Signatrol commented: “I am pleased that, although it has taken quite some time, our unique and innovative SpYdaq data logging system has finally been recognized with the grant of Patent. Many customers are already benefiting from this system and the patent will give added confidence to new adopters”

Indeed the Signatrol website quotes many well known names in the pharmaceutical and food industries as their customers: these are the major targets for Signatrol. Included are the NHS, AstraZeneca, Pfizer, GSK, and in foods Cadbury, Kellogg’s, Premier Foods and British Sugar.

The base stations can collect data from up to 16 transmitters, which can optionally also receive an external input signal, as well as monitor temperature and humidity. There is no info about the radio system employed, or the operating range, but various base stations offer local or intranet alarm set points, and there is also a unit that transmits data to the Signatrol cloud system for further recording and control actions. The base stations start at around GBP500, and the sensors at GBP130.

(c) ProcessingTalk.info

The new Process Atrato ultrasonic flowmeter

A new flowmeter for small bore liquid flows has been introduced Titan Enterprises, an enterprising British company, who are a long established manufacturer of liquid flowmeter systems. Their first ultrasonic meter was introduced in around 2010, after a long development programme in co-operation with Prof Mike Sanderson at Cranfield University, and was called the Atrato. This unit was launched for the typical markets served by Titan, of laboratory testing, drinks dispensing, cooling systems, pilot plants, fuel cells, pharmaceutical applications and OEMs – and offered a 200:1 turndown, 1% accurate obstructionless straight through meter with a 4-20mA output. Materials were mainly PEEK and borosilicate glass or stainless steel for the flow tube, but the BSP or NPT male fittings were available in stainless steel. A very clever and high performance flowmeter for flows up to 20 Litres/min.

The Launch in 2010

Regrettably, while having worked with Titan for many years prior to 2010 on their PR and promotion, a high flying expensive agency was brought in to promote the Atrato, so it disappeared off my radar. I should not say much about whether it has been seen by anyone else since then, because I don’t have any info: but why are you reading this?

Now a new launch has been announced by Titan, of the Process Atrato flowmeter: a new version of the basic flowmeter, now ‘packaged for the process and control environment’.

The Titan Atrato for the Process Industry

atrat

This unit is built from 316 stainless steel and PEEK, plus an elastomer seal to suit the application, and has the on-board electronics sealed to IP65. From the photo you can see that the threads into the stainless steel process connection (at the top of the flowmeter) are female. The lower screw thread is for an M12 four pin electrical connector. The unit is suitable for 65 Celcius and 25 bar process conditions: the non-process Atrato can operate up to 110C if the electronics is installed remotely, so presumably this might be a future development. Flow range covered is 2mL/min to 15 Litres/min, using four flowtube sizes.

Each of the four models covering the different flow ranges is configured to offer the same pre-set ‘K-factor’, which is quoted to assist OEM use and interchangeability: but it also highlights that the electronic output available on these “process units” is a PNP and an alternative NPN pulse train, quoted as a ‘frequency’ output. Presumably this relates back to the pulse output style as was provided by the other Titan turbine and positive displacement flowmeter sensors. A separate power supply, from 8-24VDC, is used to power the unit.

A few criticisms

The other surprise for me was that the meter is pictured, and obviously intended for installation, ‘upside down’, with the electrical connections and housing below the flow line. When this Process Atrato is really an equivalent to a thermal mass style gas flowmeter application, but on liquids, you would think it would be sensible to have it looking similar to these other, well-known gas flow devices. The reason for this cannot be that it needs to allow entrained air to escape, as the flow tube is just a straight tube, with no complicated connections which might trap anything.

For the engineers who can see through these confusion factors, the device is a very effective flowmeter, 200:1 turndown, +/-1% accuracy over 2-100% of range, while working with viscous as well as non-viscous fluids – with the standard Atrato features of linearity, no moving parts and fast response time. Plus the PR says it will offer a ‘reduced cost of ownership’, but does not specify what this is compared with…..surely the point is that there is not much else on offer to provide this performance, except maybe a micro-Coriolis meter.

If Only….

The pity is, ever since launching the Bestobell Doppler flowmeter in 1976, and the Platon Kat in 1998, I’ve been looking forward to being involved in the launch a decent ultrasonic flowmeter for clean liquid process applications…..

Food & Pharmaceutical Futures

‘Food & Pharmaceutical Futures’ was the title of an ISA Symposium held in Cork, Ireland in March 2016, the first ISA Food and Pharmaceutical Symposium to be held outside North America. Eoin O’Riain reported on the event, which was a major success, in his magazine Read-out.net, and also on-line: his webpage reference is bit.ly/1odd6cZ

Most of his report is re-presented here, as follows:

From the time it was first mooted for Ireland in 2015 the planning for the 3rd ISA Food & Pharmaceutical Symposium was embraced with enthusiasm by the local Ireland Section. This was in Philadelphia early in 2015  and since then the ISA’s Food & Pharma Division under the able directorship of Canadian Andre Michel has ploughed forward, overcoming setbacks and the not inconsiderable distances between North America and the capital of Munster. Chair of the symposium and former Ireland Section President, Dave O’Brien directed a strong committee charged with ensuring that this – the first such international symposium organised by the ISA outside North America – would be a resounding success.

And it was.

Venues were assessed, speakers recruited and the various minutiae associated with organising an international event were discussed, duties assigned and problems solved over many late night transatlantic telephone conferences. Using the experience of the ISA staff in North Carolina and the many years of experience in organising table-top events and conferences in Ireland by the Ireland Section a very creditable event was staged at the Rochestown Park Hotel. With some justification the Symposium Chair could state before the event started “We have assembled a truly outstanding program this year, featuring some of the world’s most accomplished experts in serialization, process optimization, cyber security and alarm management to name a few. These experts will speak on the vital issues affecting food and drug manufacturers and distributors. We are delighted to have the opportunity to bring this event to Ireland for its first time outside of the United States!”

Indeed upwards of 200 registrands agreed with this view and attended the two day event: a turnout that nearly doubled the attendance at last year’s event in Philadelphia USA. Plus it was noticeable that the bulk of the delegates stayed right up to the completion of the final sessions.

112

Technology and Innovation for 2020 Global Demands

Two fluent keynote speakersPaul McKenzie, Senior Vice President, Global Biologics Manufacturing & Technical Operations at Biogen (who addressed “Driving Change Thru Innovation & Standards”) and Dr Peter Martin, VP and Edison Master, Schneider Electric Company (Innovation and a Future Perspective on Automation and Control) may be said to have set the tone. The event was also graced with the presence of ISA International President for 2016 Mr Jim Keaveney.

The technical programme featured 40 presentations, delivered by 33 experts in their fields: a few of the session highlights were as follows:

Serialization

The important subject of serialization which affects all level of the pharmaceutical business especially in view of deadlines in the USA and the EU. From an overview of the need and the technology to a deep dive into the user requirements, this session provided the latest information on the world requirements and helping provide the solution needed in each facility. Speakers, as in most sessions, were drawn from standard, vendor and user organisations as well as state enforcement agencies.

Track & Trace

In the parallel Food thread of the symposium the rôle of track and trace technologies were examined. Product safety, output quality, variability and uniqueness of customer requirements manufacturers are facing increasing demands on the traceability of raw materials, real-time status of manufactured goods and tracking genealogy of products throughout the value chain from single line to the multiple sites of global manufacturers. The evolution of data systems and technologies being offered means greater benefits for Industry and presenters Vision ID and Crest will show these solutions and the advantage of modernization.

116Both conference threads came together for much of the event mirroring the similarity of many of the technologies and requirements of each sector.

Digitalization

Digitalization in industry shows what bringing the worlds of automation and digitalization together provides true and advanced paperless manufacturing with more complex devices and interconnected data systems. This is an enabler to integrated operations within industry. Using MES as a core concept to create a Digital Plant and optimized solutions with data driven services was explained. And a practical example of a plant was discussed showing the journey to paperless manufacturing and a real pharmaceutical strategy of integrating automated and manual operations.

Cybersecurity

Of course this is one of the key topics in automation in this day and age. Without implementing the proper preventative measures, an industrial cyber-attack can contribute to equipment failure, production loss or regulatory violations, with possible negative impacts on the environment or public welfare. Incidents of attacks on these critical network infrastructure and control systems highlight vulnerabilities in the essential infrastructure of society, such as the smart grid, which may become more of a focus for cybercriminals in the future. As well as threats from external sources steps ought to be taken to protect control and automation systems from internal threats which can cripple a company for days or months. This session highlighted the nature of these threats, how systems and infrastructure can be protected, and methods to minimize attacks on businesses.

Automation Challenges for a Greenfield Biotech Facility

114

Networking in the coffee break

These were outlined in this session in the pharmaceutical thread. Recent advances in biotechnology are helping prepare for society’s most pressing challenges. As a result, the biotech industry has seen extensive growth and considerable investment over the last number of years. Automation of Biotech plants has become increasingly important and is seen as a key differentiator for modern biotech facilities. Repeatable, data rich and reliable operations are an expectation in bringing products to market faster, monitor and predict performance and ensure right first time delivery. This session provided the most topical trends in automation of biotech facilities and demonstrated how current best practices make the difference and deliver greater value to businesses.

Process Optimization and Rationalization

Meanwhile in the Food & Beverage thread incremental automation improvement keeps competitiveness strong. Corporate control system standardization leads to constant demand for increases in production and quality.

Industry 4.0 (Digital Factory: Automate to Survive)

The fourth industrial revolution is happening! This session asked how Global Industry and Ireland are positioned. What did this mean to Manufacturer’s and Industry as a whole? The use of data-driven technologies, the Internet of things (IoT) and Cyber-Physical Systems all integrate intelligently in a modern manufacturing facility. Enterprise Ireland and the IDA headlined this topic along with the ICMR (Irish Centre for Manufacturing Research) and vendors Rockwell and Siemens.

OEE and Automation Life-cycle

Worldwide today many of the over 60 Billion Euro spend in installed control systems are reaching the end of their useful life. However, some of these controls, operational since the 80’s and 90’s, invested significantly in developing their intellectual property and much of what was good then is still good now. Of course some aspects still need to evolve with the times. This requires funding, time and talent. For quite some time now there has been a skilled automation shortage at many companies leading organizations to outsourcing, partnerships and collaboration with SME’s to help manage the institutional knowledge of their installed control systems.

115

Further networking

With corporate leadership sensitive to return to shareholders, plant renovation approval hurdle rates are usually high when it comes to refreshing these control systems. In many manufacturing facilities, engineers and production managers have been asked to cut costs and yet still advance productivity. To solve this dilemma, many world class facilities continue to focus on driving improvements through the use of automation and information technology. Some are finding that using existing assets in conjunction with focused enhancement efforts can take advantage of both worlds. Here we were shown great examples of where innovation and such experiences are helping to create real value for automation modernization.

Alarm management

And of course no matter how sophisticated systems are Alarms are always require and necessary. DCSs, SCADA systems, PLCs, or Safety Systems use alarms. Ineffective alarm management systems are contributing factors to many major process accidents and so this was an important session to end the symposium.

The social aspect of this event was not forgotten, and following a wine reception there was an evening of networking, with music, at the end of the first day.

Training Courses

113

Eric Cosman in full flow

On the Wednesday, although the symposium itself was finished there were two formal all day training courses.

  1. Introduction to Industrial Automation Security and the ANSI/ISA-62443 Standards (IC32C – Leader Eric Cosman, OIT Concepts ).
  2. Introduction to the Management of Alarm Systems (IC39C – Leader Nick Sands, DuP0nt).

These, and other, ISA courses are regularly held in North America and the Ireland Section occasionally arranges for them in Ireland.

In Summary

Andre Michel, ISA FPID Director, and President of Efficient Plant Inc, summed up the impressions left by this first such ISA conference outside North America: “This was truly an internationally focused event because it tackled the significant issues and trends in automation affecting the food and pharmaceutical industries on a global scale.”

All in all the Ireland Section and its members may feel very proud in looking back on a very well organised and informative event which in an email from one of the attendees, “Thank you all, It was the best symposium I attended in the last 10 years!”

Emerson Enardo relief valves get WirelessHART communications

Emerson acquired Enardo, a manufacturer of pressure and vacuum relief valves based in Tulsa, Oklahoma, in late 2013. This week saw the launch of a new wireless enabled version of the Enardo pressure and vacuum relief and safety valve used on storage tanks in the oil and gas, petrochemical and pharmaceutical industries.

Enardo_950_w-bracket

By adding the Smart Wireless monitoring system operating over the Emerson WirelessHART network, the safety valves, normally located on the top of large storage tanks, can easily signal to operators in the control room that they have been triggered to either relieve a pressure or vacuum condition. Such situations can arise as a result of changes in temperature, liquid level, or both, and relief valves are essential to prevent tank over or under-pressure conditions that could lead to structural failure. Enardo pipe-away, vent-to-atmosphere, in-line and end-of-line relief valves are typically installed on storage tanks to control evaporation and fugitive emission losses that result from flammable and hazardous petroleum vapour-producing products. Knowledge of the actuation of such a safety valve enables an immediate response, where needed, to prevent problems which can be related to safety, emissions, and the quality of a tank’s content.

Steve Attri, product manager at Emerson for the Enardo valves, commented: “Until now, PVRVs have remained un-monitored, with none of the feedback loops commonly seen in other pressure control devices. As the tank’s primary pressure control device, this wirelessly-monitored solution can be invaluable.”

Enardo manufactures tank and terminal safety equipment, including hatches, vent, pressure and vacuum relief valves and flame arrestors used in the oil and gas, petrochemical, chemical and other industries. Enardo in-line and stack vent valves have been the oilfield industry standard for more than 80 years.

Prior to the acquisition by Emerson, Enardo had sales of $65m a year, and employed 140 people. It now operates within the Regulator Technologies business, previously known as Fisher Regulators, within Emerson Process Management.

© Nick Denbow ProcessingTalk.info

@ProcessingTalk

Ireland moves ahead in PAT for biopharmaceuticals

Tyndall-48700z

Dr Karen Twomey, holding a PATsule

Ireland has established pharmaceuticals as one of their major production industries, and this has led to a major concentration of expertise, particularly around Cork. The Tyndall National Institute there, with others, have developed a smart sensor capsule for use in bioreactors, to provide process analytical information – a true PAT sensor. Given the name of a ‘PATsule’, the sensor is designed to float freely about in the process liquids, to transmit in-situ process monitoring even from within the active biofluid: it communicates with the rest of the world using wireless. The PATsule “uses a multi-disciplinary approach of micro- and nano-sensor technology, miniaturised instrumentation, data analytics and wireless communications” according to Dr Karen Twomey, at Tyndall. The PATsule has been specifically used in the production of protein therapies.

In March even more pharma expertise will visit Cork, as the ISA from America recognizes Ireland’s status as the place to review modern pharmaceutical production by bringing the Food and Pharma Division symposium to Cork. This is the first time ever that this symposium will be held outside North America.  Special attention will be paid in the meeting to the rôle of automation technology and innovation in the industry, particularly relating to regulatory requirements and manufacturing costs. The dates to be in Cork are 14-15 March.

New paperless recorder

Yokogawa has announced the launch of their new SmartDAC+ GX and GP series paperless recorders, which comply with the FDA 21 CFR Part 11 guidelines, and accommodate an increased number of inputs. The FDA 21 CFR Part 11 guidelines were issued in 1997, and stipulate what is required for electronic records and electronic signatures to have the same validity as paper-based records and signatures. With release 2, the GX and GP series recorders now comply with these guidelines for use in production operations.

In addition the new units can be used with up to six expansion units, each of which can accommodate up to 60 inputs. Including direct inputs, this gives each recorder the ability to handle a combined total of up to 450 inputs. The expansion units can be located at up to 100m from the recorder, so enabling reduced cabling costs for satellite operations.

The recorder also is available with an optional graphic display, enabling the unit to operate as a process display unit or console panel, in addition to its main data recording function.