Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.

Emerson acquires PermaSense

Emerson has announced the acquisition of UK-based Permasense Ltd, a leading provider of non-intrusive corrosion monitoring technologies for the offshore and onshore oil production, refining, chemical, power, pipelines, metals and mining and other industries. Permasense monitoring systems use unique sensor technology, wireless data delivery and advanced analytics to continuously monitor for metal loss from corrosion or erosion in pipes, pipelines or vessels, and reliably deliver high-integrity data from even the harshest environments.

The acquisition represents another step forward in the Emerson strategy to invest in its core business platforms and expand in markets that hold significant long-term growth opportunity.

“Corrosion and erosion can significantly impact the safe and reliable operation of our industrial customers’ infrastructure, which can have dire consequences. Wireless non-intrusive corrosion monitoring is a transformational shift that helps customers immediately understand the health and integrity of their infrastructure in real-time and enables them to fully optimise their operations while maximising safety,” said Mike Train, president, Emerson Automation Solutions. “For example, with the increasing complexity of the types of crude oil coming into a refinery, corrosion is becoming a significant issue in the uptime and profitability of a refinery. Now refinery infrastructure can be monitored and controlled using this non-intrusive technology.”

The Permasense product line will become part of the Rosemount portfolio of measurement and analytical technologies. Permasense technologies complement the Emerson Roxar intrusive corrosion monitoring and non-intrusive sand management systems and strengthen the company’s Pervasive Sensing applications that provide customers a more complete view of their operations and facilities. With Permasense and Roxar technologies in its portfolio, Emerson will be the largest provider of integrity and corrosion management solutions in the marketplace.

Lal Karsanbhai, group vp, measurement and analytical technologies, Emerson Automation Solutions, added: “The addition of patented Permasense technologies along with our existing Roxar technologies enables Emerson to provide customers with a more complete corrosion monitoring solution and a clearer picture into the performance of their infrastructure based on what they’re demanding of it and the strategies needed to optimise production.”

Central to Permasense corrosion monitoring systems are sensors that employ proven ultrasonic wall thickness measurement principles. The sensors are battery powered and communicate wirelessly, which minimises the cost of installation and enables use in remote areas and on a large scale. The sensors are also designed so they can be deployed in hazardous areas.

man-adjustpipe

Raman analyser at Huntsman Petrochemicals

 

Raman laser-based technology in Rosemount Analytical unit helps plant deliver 99.7% purity by reducing feedstock variability in paraxylene purification.

Huntsman Petrochemicals produces up to 360 Ktonnes per year of paraxylene at its Wilton site in the UK, a plant where control was recently transferred to a DeltaV digital automation system, a technology of Emerson Process Management. Further investment, in a Rosemount Analytical Raman on-line laser spectrometer from Emerson, has resulted in added process optimisation and performance improvement, and allowed site engineers more insight into their production process.

Paraxylene is a key starting material in the creation of polyester resin and fibre, used in the manufacture of clothing, films, drink bottles and food containers. The pure product is separated from the other two xylene isomers – orthoxylene and metaxylene – in a process that involves selective crystallisation from a chilled solution and centrifuging the resulting suspension. Optimum efficiency is maintained by controlling the composition of the incoming feed stream to the purification plant.

The previous method of monitoring the process stream composition used on-line melting point analysers, confirmed with frequent grab samples delivered for laboratory analysis. The delays inherent in providing meaningful data from either of these techniques led to a variability of 2 – 3% in feed composition. Early in 2003, a Rosemount Analytical Raman Analyser was installed, allowing full on-line composition monitoring of the feed to the purification plant. With composition information being updated every minute, process variability has been dramatically reduced by an order of magnitude to 0.25% with a consequent improvement in plant stability.

Data that improves plant performance

“The Raman analyser is definitely helping the plant performance,” says Tom Liddle, Plant Manager for the paraxylene plant at Wilton. “By reducing the variability of the process composition, we can run the plant at the optimum settings. We have improved plant efficiency, improved consistency, and we get the 99.7% quality required first time, all the time.”

Steve Gill, Process Engineer at Huntsman Petrochemicals, who pioneered this first use of a Raman spectrometer on-line at Wilton, says, “Considering that we are doing in-line dilution, I am very pleased with the performance. While the main benefit of the purification control scheme is to give consistent solids feed to our centrifuges, an additional benefit has been the ability to see the impact of upstream changes on variability. We’ve never been able to see that in real time before.”

Tom Liddle is also pleased to see the plant running smoother: “Without the on-line control provided by the Raman, variability in the process would occasionally lead to excessive solids loading in the centrifuges, resulting in vibration and potential bearing damage. Now we run at maximum output, and have reduced wear on the centrifuges.”

Raman Spectroscopy

Raman spectrometry uses single wavelength laser light to probe the sample stream. On the molecular level, a very small fraction of the light intensity is scattered. While most of this scattered light occurs at the same laser wavelength (Rayleigh scattering) an even smaller fraction of the incident light is shifted to longer wavelengths (Raman scattering).

The shift in wavelength from that of the laser source represents an exchange of energy with sample molecules. From the pattern of wavelength shifts and intensity of Raman scattering, both qualitative (molecular species) and quantitative (concentration) information can be determined. In practice a multivariate calibration model is developed for the application, allowing multi-component analysis to be performed.

Analysis of four streams

The Process Raman Analyser at Wilton will be used for simultaneous measurements at four separate process locations on the plant – feed and recycled material as described above, plus two final product streams to monitor paraxylene purity. “We are still learning what the analyser can do,” added Tom Liddle, “and have a little more to understand to get the on-line quality measurements on the product streams fully operational.”

The analyser is located in a control building. The laser light is transmitted through fibre optic cables onto the plant to the four measuring locations: optical probes provide the interface to the process streams. At each probe, light scattered by the sample is collected and transmitted back to the analyser through the return fibre. The derived analysis and concentration data are transmitted via Modbus communications to the Emerson DeltaV process control system, and the signals used to control plant feed dilution.

The Rosemount Analytical Raman support team, working on both sides of the Atlantic, worked with engineers from Huntsman Petrochemicals to provide project guidance from the early consultation and application engineering through to calibration and commissioning. The Rosemount Raman analyser is monitored remotely by Emerson engineers in Ohio, to allow on-line tuning and remote performance optimisation of the calibration model used.