600,000 flowmeters measure beer and lager flow

Titan Enterprises has established a long-standing working relationship with Vianet plc (formerly Brulines) for the supply of beer flowmeters for pub and bar automation projects. Over the last 20 year period Titan have delivered, and Vianet has installed, over 600,000 of these meters for beer and other bar flow measurement and automation applications.

Brulines, was formed in 1993 with the intention of providing pub chain owners with data on their bar activity via an electronic point of sale (EPOS) system. After trialling several other flowmeters, the company sought a solution to resolve flowmeter bearing lifespan problems and to overcome the unreliability of the optical detection method in beer.

beer-meter

The beer flowmeter

Following a collaborative approach to developing the solutions needed for the Vianet customer base, Titan Enterprises proposed an adapted version of its 800-series turbine flowmeter as the design included durable sapphire bearings proven reliable for many thousand hours operation, and a Hall effect detector which was not subject to problems with discolouration inside the pipe. After successful tests, a trial order for 400 units was placed in 1997, which after the subsequent field trials, was followed by an order for >5000 meters which were all delivered to the clients required timescales.

To ensure the flowmeter was ‘fit for purpose’, Titan additionally adapted the cable type as well as the body and increased the length to 10 metres. These adaptions enabled Brulines installations to be maintained in beer cellars with differing wire runs to the control panel without any junction boxes.

Twenty Years of Collaboration

With the widespread reliability of this product, Vianet turned again to Titan Enterprises in 1999 to develop for them an “intelligent” flowmeter (IFM) for their enhanced iDraught retail product. The specification for the IFM required that it should additionally measure temperature as well as determining the type of fluid in the line to detect line cleaning cycles which are essential for the dispensing of a good pint.

At the time, Titan did not have the technology to provide sensing electronics at a reasonable price so we produced a revised version of the beer flowmeter with the capability of being matched to a PCB designed, manufactured and installed by a third party.

After trialling and testing, this new IFM was introduced in June 2000 and supplied to Vianet at the rate of up to 3500 units a week. Mark Fewster, product manager at Vianet commented “Titan’s supply chain has always delivered to our quality and timescale needs”.

IoT Developments

ifm latest

An intelligent flowmeter design

Since this first IFM introduction, close collaboration between the two parties has resulted in 5 iterations of the product with revised features as end user requirements have developed and evolved with the growth of the IOT (Internet of Things). Drawing upon this close working relationship, over a long period of time, Titan continue to work with Vianet on new solutions and offerings as the Vianet customer offering further develops.

This Titan Enterprises application story is based on a report in the Autumn issue of Flowdown, the regular news bulletin published by Trevor Forster, MD of Titan, from their Dorset, UK base.

Advertisements

Roxtec transits ensure safety on “Mein Schiff 6”

DCIM100MEDIADJI_0305.JPG

On cruise liner Mein Schiff 6 of TUI Cruises, thousands of Roxtec transits provide certified protection against fire, gas, water and electromagnetic disturbance. Co-owner Royal Caribbean and shipyard Meyer Turku in Finland continue to cooperate with Roxtec to enable the use of more plastic and composite pipes.   “Roxtec transits make it cost-efficient to install light-weight and long-lasting plastic pipes,” says Berth Strömborg, senior superintendent of Royal Caribbean.

One sealing system

Over 6000 openings for cables and pipes in decks, bulkheads and cabinets are sealed with Roxtec transits. The seals are used in the engine room as well as in passenger areas, and many of them include spare capacity for additional cables and pipes.  “It is good to have one supplier for all pipe systems,” says Antti Laaksonen, system responsible for HVAC and catering design at Meyer Turku.

Optimizing logistics

Mika Tuokko, head of electrical outfitting at Meyer Turku, says one hundred installers have been working with Roxtec cable seals on the new cruise liner:  “The most important thing is to keep up the speed by handling fewer items. By using Roxtec instead of other systems we avoid 50 items in stock for each transit.”

unnamed (2)

Roxtec Mulltidiameter bulkhead seals in-situ

About Roxtec and Multidiameter

The Swedish Roxtec Group is the world-leading provider of modular-based cable and pipe seals. The company’s invention for adaptability to cables and pipes of different sizes, the Roxtec Multidiameter, is based on sealing modules with removable rubber layers and allows for a perfect sealing, regardless of the outside dimension of the cable or pipe.  The technology simplifies design, speeds up installation and reduces the need for stock, material and logistics. It also provides spare capacity for upgrades. Roxtec serves and supports customers in more than 80 markets through subsidiaries and distributors.

Wireless gas detection total system

Yokogawa has announced that the ProSafe-RS SIL2 Wireless Gas Detection System will be released in September 2017. This will offer a total flammable gas detection system solution, using ISA100 wireless communications, and Yokogawa will include the necessary  consulting and engineering.

The ProSafe-RS SIL2 wireless gas detection system will consist of a newly enhanced version of the Yokogawa ProSafe-RS SIL3 safety instrumented system (R4.03.10), Yokogawa field wireless network devices, annunciator panels, and GasSecure (a subsidiary of Drägerwerk AG) wireless gas detectors GS01 or the GS01-EA (this model is equipped with an extension antenna).

For this system, Yokogawa will establish a total solution that will include both consulting and engineering.

Development Background

In energy and basic materials industries such as oil & gas, petrochemicals and chemicals, a safety instrumented system is employed to safely initiate an emergency plant shutdown when a critical failure is detected, and to initiate the operation of facilities that can extinguish or prevent the spread of a fire.

A field wireless system consists of field devices that are able to communicate wirelessly with a monitoring and control system. Wireless devices have a number of advantages such as allowing installation in difficult-to-access locations and the reduction of installation costs, and they are increasingly seen as essential elements in plant safety solutions. This is a particularly important consideration with gas detection systems, as operation can easily be impacted by factors such as installation location and ambient conditions. And even after system installation, ongoing efforts to optimise its overall configuration may necessitate occasional changes in the location and number of detection devices. The use of wireless technology eliminates the need to worry about wiring and thus greatly facilitates the process of moving and/or installing additional detection devices.

To achieve SIL2 level risk reduction when using wireless gas detectors with a safety instrumented system, communication protocols that comply with the functional safety requirements specified in the IEC 61508 international standard are required. A standard for the functional safety of electrical/electronic/programmable safety-related systems. To meet this need, Yokogawa will provide a SIL2 wireless gas detection system based on a new version of the ProSafe-RS safety instrumented system that will link to field devices using an IEC 61508 compliant communication protocol.

Features of the System

The ProSafe-RS SIL2 wireless gas detection system will consist of a new version of the ProSafe-RS safety instrumented system, R4.03.10, that will be enhanced to add support for an IEC 61508 compliant safety communication technology used in distributed automation; annunciator panels; ISA100 Wireless compliant field wireless devices; and GasSecure GS01 or GS01-EA wireless gas detectors, which are the only devices of this type in the industry that achieve SIL2 risk reduction. The ISA100 Wireless network protocol is based on the ISA100.11a wireless communication standard for industrial automation that was developed by the International Society of Automation (ISA), and the applications necessary for its implementation. This was approved as the IEC 62734 international standard in October 2014.

Total system solution including both consulting and engineering

Through the use of wireless technology, the ProSafe-RS SIL2 wireless gas detection system will allow increased flexibility with the configuration of detection devices, and will be suitable for use as a fire & gas system and emergency shutdown system thanks to its achievement of SIL2 risk reduction. Based on its knowledge of each of this system’s components and its expertise in production control, safety instrumentation, and field wireless engineering and consulting, Yokogawa will be able to offer a total system solution that includes customer support.

Enhanced operating efficiency

On their Yokogawa CENTUM VP integrated production control system screens, operators will be able to easily monitor the operation of the ProSafe-RS SIL2 wireless gas detection system as well as that of any conventional wired gas detection system. Since the GasSecure GS01 or GS01-EA wireless gas detector uses the same faceplate as a wired gas detector, operators will have no trouble identifying any changes in the detector’s status, thus helping to prevent errors that can result from the misinterpretation of information.

 Improved maintenance

With CENTUM VP, operators will have on-screen access to information on the status of all network devices, the charge remaining on the gas detector batteries, and the status of wireless communications, and thus will be able to quickly detect and respond to any abnormality. Thanks to this functionality, more efficient maintenance plans can be drawn up that, for example, will require fewer periodic checks.

yokogawa

About ProSafe-RS

Released in February 2005, the ProSafe-RS safety instrumented system helps prevent accidents by detecting abnormal conditions in plant operations and initiating emergency actions such as a plant shutdown. An independent certification body has certified that ProSafe-RS can be used in SIL3 applications. Unlike conventional safety instrumented systems and distributed control systems, which are regarded as having different roles and functions and operate separately, the operation of ProSafe-RS and the CENTUM integrated control system can be fully integrated. ProSafe-RS is highly regarded by users and has been installed in more than 2,100 projects worldwide (as of June 2017).

Yokogawa’s Commitment to the Field Wireless Business

Yokogawa developed wireless communication technologies for continuous processes that necessitate advanced control and released the world’s first ISA100 Wireless system devices in July 2010, thereby offering its customers a wider range of products to choose from. Currently, Yokogawa offers its customers in the oil & gas, and other industries a wide range of field wireless management stations, field wireless access points, wireless field devices, and wireless adapters for conventional wired devices.

Major Target Markets and Applications

For use in fire and gas systems (FGS) and emergency shutdown systems (ESD) in process industries such as oil, natural gas, petrochemicals, chemicals, pharmaceuticals, electric power, and iron and steel.

Dräger GasSecure

GasSecure AS is a subsidiary of Dräger, and has been a long term partner with Yokogawa in developing the market for wireless gas detectors using ISA100. GasSecure developed, markets and sells the world’s first truly wireless optical gas detector for demanding industrial applications. Representing an evolution in gas detection, the detector is based on innovative ultra-low power MEMS optical technology and has introduced a new level of reliability and flexibility for the detection of gas leaks. The totally wireless detectors increase safety and dramatically reduce costs for the oil & gas, petrochemical, marine, and other process industries. For more information, please visit www.gassecure.com.

UV keeps bottled water safe

Hanovia UV has supplied Cott Beverages UK, based in Derby, with a PureLine intelligent UV system to keep its production process water pure.

PureLine range

In an increasingly regulated and safety-conscious market, legislation such as the EU Directive for Bottled Water 98/88/EC (1998) drives the beverage industry to meet ever more stringent standards of quality. Microbial growth due to contaminated water or ingredients can cause discolouration, off flavours and shortened shelf-life. The threat of contamination is further increased as manufacturers respond to demands for less chemical additives and preservatives. Effective microbial disinfection of the whole process is therefore essential.

To meet this requirement, Cott Beverages has been using Hanovia UV disinfection technology to treat process water used in the production process. The company decided to use UV technology to ensure final product security prior to mixing and bottling and has been very satisfied with the performance of the UV systems.

“The Hanovia UV systems have been easy to integrate, maintain and operate,” said Chris Prentice, site service engineer at Cott Beverages. “They provide us with absolute insurance before bottling by making sure that we are producing and maintaining a high-quality product, which is essential for our brand.”

PureLine UV from Hanovia is an intelligent system that is optimised for the beverage industry to simplify the treatment of water, sugar syrup, brine and even reducing chlorine and ozone. Critically, there are no microorganisms known to be resistant to UV – this includes pathogenic bacteria such as listeria, legionella and cryptosporidium (and its spores, which are resistant to chlorination). Unlike chemical treatment, UV does not introduce toxins or residues into process water and does not alter the chemical composition, taste, odour or pH of the fluid being disinfected.

UV is used for both primary disinfection or as a back-up for other purification methods such as carbon filtration, reverse osmosis or pasteurisation. Because UV has no residual effect, the best position for a treatment system is immediately prior to the point of use. This ensures incoming microbiological contaminants are destroyed and there is a minimal chance of post-treatment contamination.

UV disinfection systems are easy to install, with minimum disruption to the plant. They need very little maintenance, the only requirement being the replacement of the UV lamps every 9-12 months, depending on use. This is a simple operation that takes only a few minutes and can be carried out by trained general maintenance staff. The Hanovia UVCare training programme supports businesses like Cott Beverages to make sure servicing is carried out by certified engineers at all UK production sites.

Time-Sensitive Networking in Profinet

Bob Squirrell of PI and the UK Profibus Group advises that Time-sensitive Networking is planned for integration into Profinet. The release is as follows: 

“A promising new IEEE technology for Ethernet that combines the bandwidth of IT (information technology) networks with the latency of OT (operational technology) networks is in the offing in the form of TSN (Time-sensitive Networking). TSN consists of a tool kit of standardized mechanisms that can be used in Ethernet-based networks. In the PI (Profibus & Profinet International) “Industry 4.0” working group, the requirements and goals for the future use of TSN in Profinet have now been worked out.

unnamed

The focus of the work is first and foremost on easy handling for Profinet users. They should be able to use the new technology easily in their devices or systems while still taking advantage of the existing knowledge. Furthermore, services such as diagnosis, parameterization, etc. should be identical as in the current landscape. The engineering, i.e. the configuration of the network, should also be performed in the familiar way. In this way PI permits an easy transition to the new Ethernet landscape and ensures broad acceptance among users.

In addition, PI relies on standard Ethernet technology so it can both draw on a broad selection of Ethernet chips for the implementation of the Profinet interface on devices and also benefit from the further developments of IEEE technology such as gigabit bandwidths. Furthermore, synchronous networks can be implemented for isochronous applications with TSN. Previously, networks had to be set up separately and integrated in dedicated chips in the devices. This is the only way to ensure not only that Profinet remains future-proof for users, but also that simpler setups will be possible.

Besides a stack architecture that is easy to integrate and scale, a further crucial goal for the use of the technology is a high degree of determinism and robustness to IP-based traffic that is not real-time capable. The reliability increases, since TSN allows bandwidth to be reserved on the network for individual tasks so they are not disrupted by other traffic. This is especially important, since a variety of protocols will be used side by side in future in Industry 4.0 networks. In this way PI incorporates parallel communication via OPC UA between stations on the system level or from devices on the field level to the cloud right from the start.

However, with the introduction of TSN, it is also necessary to simplify the engineering of the network for more complex systems, until they become plug-and-work-capable networks that permit reconfiguration during ongoing operation. In addition, the TSN mechanisms that arise alongside the real-time protocol procedure offer the options that PI is consistently pursuing.

Karsten Schneider, Chairman of PI, summarizes the benefits of this approach thus: “PI will expand Profinet with the mechanisms of TSN in layer 2, retaining the application layer on the higher levels. This makes it possible to migrate the applications to the new technology simply and incrementally and to take advantage of the advantages of an open, globally standardized IT technology.”

 

Battery Energy Storage Systems help UK power efficiency

Nidec ASI, of Milan in Italy, part of the appliance, commercial and industrial motor business of Nidec in Japan, has won an order from the UK-based EDF Energy Renewables business for the installation and supply of a second Battery Energy Storage System (BESS), for use on the British National Grid.

EDF ER, a renewable energy developer, is a JV company between EDF Energy in the UK and EDF Energies Nouvelles in France. As a result of this new contract, Nidec ASI will act as an EPC (engineering, procurement, and construction) contractor to supply the 49 MW BESS system that EDF ER is building to serve the National Grid, the British electricity distribution company. The contract, which follows closely after an earlier large-scale deal for a 10 MW battery energy storage system (also for National Grid) makes Nidec ASI reach a 33% market share in the British BESS systems market.

As renewable energy resources are more widely used – to reduce the environmental impact of power generation – investments in battery energy storage systems are becoming increasingly prominent. These stabilise the power grid by temporarily storing any surplus electricity generation, and discharging the saved electricity during power shortages. Last November Nidec ASI delivered the world’s largest (90 MW) BESS system to major electricity firm STEAG of Germany. As a leader in the BESS market, Nidec is committed to stabilizing the world’s power grids and contributing to realizing a low-carbon society via the spread and expansion of battery energy storage systems and high-quality state-of-the-art equipment.

EDF West Burton 2

The BESS will be installed at the EDF Energy West Burton site in Nottinghamshire, pictured above, to support the UK’s National grid.

Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.