UV keeps bottled water safe

Hanovia UV has supplied Cott Beverages UK, based in Derby, with a PureLine intelligent UV system to keep its production process water pure.

PureLine range

In an increasingly regulated and safety-conscious market, legislation such as the EU Directive for Bottled Water 98/88/EC (1998) drives the beverage industry to meet ever more stringent standards of quality. Microbial growth due to contaminated water or ingredients can cause discolouration, off flavours and shortened shelf-life. The threat of contamination is further increased as manufacturers respond to demands for less chemical additives and preservatives. Effective microbial disinfection of the whole process is therefore essential.

To meet this requirement, Cott Beverages has been using Hanovia UV disinfection technology to treat process water used in the production process. The company decided to use UV technology to ensure final product security prior to mixing and bottling and has been very satisfied with the performance of the UV systems.

“The Hanovia UV systems have been easy to integrate, maintain and operate,” said Chris Prentice, site service engineer at Cott Beverages. “They provide us with absolute insurance before bottling by making sure that we are producing and maintaining a high-quality product, which is essential for our brand.”

PureLine UV from Hanovia is an intelligent system that is optimised for the beverage industry to simplify the treatment of water, sugar syrup, brine and even reducing chlorine and ozone. Critically, there are no microorganisms known to be resistant to UV – this includes pathogenic bacteria such as listeria, legionella and cryptosporidium (and its spores, which are resistant to chlorination). Unlike chemical treatment, UV does not introduce toxins or residues into process water and does not alter the chemical composition, taste, odour or pH of the fluid being disinfected.

UV is used for both primary disinfection or as a back-up for other purification methods such as carbon filtration, reverse osmosis or pasteurisation. Because UV has no residual effect, the best position for a treatment system is immediately prior to the point of use. This ensures incoming microbiological contaminants are destroyed and there is a minimal chance of post-treatment contamination.

UV disinfection systems are easy to install, with minimum disruption to the plant. They need very little maintenance, the only requirement being the replacement of the UV lamps every 9-12 months, depending on use. This is a simple operation that takes only a few minutes and can be carried out by trained general maintenance staff. The Hanovia UVCare training programme supports businesses like Cott Beverages to make sure servicing is carried out by certified engineers at all UK production sites.

Time-Sensitive Networking in Profinet

Bob Squirrell of PI and the UK Profibus Group advises that Time-sensitive Networking is planned for integration into Profinet. The release is as follows: 

“A promising new IEEE technology for Ethernet that combines the bandwidth of IT (information technology) networks with the latency of OT (operational technology) networks is in the offing in the form of TSN (Time-sensitive Networking). TSN consists of a tool kit of standardized mechanisms that can be used in Ethernet-based networks. In the PI (Profibus & Profinet International) “Industry 4.0” working group, the requirements and goals for the future use of TSN in Profinet have now been worked out.

unnamed

The focus of the work is first and foremost on easy handling for Profinet users. They should be able to use the new technology easily in their devices or systems while still taking advantage of the existing knowledge. Furthermore, services such as diagnosis, parameterization, etc. should be identical as in the current landscape. The engineering, i.e. the configuration of the network, should also be performed in the familiar way. In this way PI permits an easy transition to the new Ethernet landscape and ensures broad acceptance among users.

In addition, PI relies on standard Ethernet technology so it can both draw on a broad selection of Ethernet chips for the implementation of the Profinet interface on devices and also benefit from the further developments of IEEE technology such as gigabit bandwidths. Furthermore, synchronous networks can be implemented for isochronous applications with TSN. Previously, networks had to be set up separately and integrated in dedicated chips in the devices. This is the only way to ensure not only that Profinet remains future-proof for users, but also that simpler setups will be possible.

Besides a stack architecture that is easy to integrate and scale, a further crucial goal for the use of the technology is a high degree of determinism and robustness to IP-based traffic that is not real-time capable. The reliability increases, since TSN allows bandwidth to be reserved on the network for individual tasks so they are not disrupted by other traffic. This is especially important, since a variety of protocols will be used side by side in future in Industry 4.0 networks. In this way PI incorporates parallel communication via OPC UA between stations on the system level or from devices on the field level to the cloud right from the start.

However, with the introduction of TSN, it is also necessary to simplify the engineering of the network for more complex systems, until they become plug-and-work-capable networks that permit reconfiguration during ongoing operation. In addition, the TSN mechanisms that arise alongside the real-time protocol procedure offer the options that PI is consistently pursuing.

Karsten Schneider, Chairman of PI, summarizes the benefits of this approach thus: “PI will expand Profinet with the mechanisms of TSN in layer 2, retaining the application layer on the higher levels. This makes it possible to migrate the applications to the new technology simply and incrementally and to take advantage of the advantages of an open, globally standardized IT technology.”

 

Battery Energy Storage Systems help UK power efficiency

Nidec ASI, of Milan in Italy, part of the appliance, commercial and industrial motor business of Nidec in Japan, has won an order from the UK-based EDF Energy Renewables business for the installation and supply of a second Battery Energy Storage System (BESS), for use on the British National Grid.

EDF ER, a renewable energy developer, is a JV company between EDF Energy in the UK and EDF Energies Nouvelles in France. As a result of this new contract, Nidec ASI will act as an EPC (engineering, procurement, and construction) contractor to supply the 49 MW BESS system that EDF ER is building to serve the National Grid, the British electricity distribution company. The contract, which follows closely after an earlier large-scale deal for a 10 MW battery energy storage system (also for National Grid) makes Nidec ASI reach a 33% market share in the British BESS systems market.

As renewable energy resources are more widely used – to reduce the environmental impact of power generation – investments in battery energy storage systems are becoming increasingly prominent. These stabilise the power grid by temporarily storing any surplus electricity generation, and discharging the saved electricity during power shortages. Last November Nidec ASI delivered the world’s largest (90 MW) BESS system to major electricity firm STEAG of Germany. As a leader in the BESS market, Nidec is committed to stabilizing the world’s power grids and contributing to realizing a low-carbon society via the spread and expansion of battery energy storage systems and high-quality state-of-the-art equipment.

EDF West Burton 2

The BESS will be installed at the EDF Energy West Burton site in Nottinghamshire, pictured above, to support the UK’s National grid.

Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.

KROHNE emphasises networking R+D with new CTO Attila Bilgic

The Advisory Board of the Krohne Group has appointed Dr Ing Attila Bilgic as CTO and Managing Director of Ludwig Krohne GmbH & Co KG. He assumes global responsibility for research and development (R+D) and extends the managing board of the Krohne Group alongside the existing Directors, Michael Rademacher-Dubbick and Stephan Neuburger.

attila_bilgic_15cm_breit_72dpi_rgb

New Krohne CTO Dr Attila Bilgic

Dr Bilgic’s main task is the “digitization” of the Krohne measuring devices and measuring systems, their networking and their integration amongst themselves, as well as with and into the digital systems of the users. The area of “smart sensors”, which Krohne has already pioneered with various research projects under his leadership, is also of particular significance. With more than 350 employees, The Krohne Group currently employs about 10% of all staff in research and development, with more than 350 R+D employees and a budget of approximately 8% of the total group turnover (in 2015 the turnover was approximately EURO 500 million).

The topic of networking has been the major topic in the previous career of Dr. Bilgic: prior to joining Krohne, he held various positions in the “Communication Solutions” division of Infineon Technologies AG from 2000 to 2009, most recently as Director of System Engineering. From 2007 to 2009, he was head of the Department of Integrated Systems at the Ruhr-Universität Bochum. Since 2016, he has been a member of the board of the VDI / VDE Society of Measuring and Automation Technology. He is also a member of the German Physical Society and the Institute of Electrical and Electronics Engineers (IEEE).

Remaining Useful Life analysis via the Senseye cloud @ProcessingTalk #PAuto

Senseye, the Uptime-as-a-Service specialists, has launched a new version  of its automatic condition monitoring and prognostics software, which offers their ‘Remaining Useful Life’ calculations to all customers – whether they operate 10 or 10,000 assets. Senseye is unique in offering automated condition monitoring combined with Remaining Useful Life analysis.

Knowing the Remaining Useful Life of machinery helps their industrial clients to implement cost-effective predictive maintenance, typically leading to a 10-40% reduction in maintenance costs and a parallel downtime reduction of 30-50%. The software has already been adopted by a major automotive OEM, helping them to avoid their downtime cost – which is over $2m per hour.

Up until now, the Remaining Useful Life measurement has been an academic focus, accessible only to those with extensive data engineering skills.  The patent-pending Senseye technology makes it accessible to all. The automated analysis is designed to be easy to use by maintenance teams and managers and is backed by Senseye’s extensive background in condition monitoring, based on experience in the highly competitive aerospace and defence industries.

Robert Russell, Senseye CTO commented: “Being able to see the Remaining Useful Life of machinery – without requiring expert input – empowers site maintenance engineers to get maximum value from their condition monitoring solutions”.

Trusted by a number of Fortune 100 companies, Senseye offers a leading cloud-based condition monitoring and prognostics product. Their award-winning solutions are usable from day one and available as a simple subscription service, enabling customers to rapidly expand their predictive maintenance programs.

Wonderware Ireland Event in March

Industrial software provider Wonderware Ireland is to host a special event at Fota Island Resort, Cork, where it will give manufacturers and system integrators an exclusive look at the latest Wonderware developments.

On 29th March 2017, the “Next Generation Roadshow” will explore Wonderware’s latest innovations, as well as providing delegates with a greater understanding of the future of the industrial landscape and how they can ensure they are prepared for it.

The day will begin with a look into the advances of digitisation within industrial automation, before discussing the OT (Operational Technology) networking landscape and how to manage operational Big Data.

Wonderware Ireland will also introduce their Next Generation SCADA system – an upcoming release developed to provide greater simplicity, flexibility and scope. The Next Generation SCADA improvements include an enhanced UI visual experience with “out-of-the-box” content and process visualisation standards, web-based access and a heightened ability to access and aggregate IIoT data.

An optional afternoon session will then see Systems Architects take attendees through a practical workshop. This will allow them to get hands-on with the technologies that are bringing connected and future-proof industrial environments into fruition, before finishing with an opportunity to discuss issues one-on-one with the Wonderware technical experts.

Aidan Finnegan, Wonderware Regional Manager for Ireland, said: “Following the success of the new-concept Wonderware event late last year, we decided to bring the roadshow back to the Fota Island Resort in Cork. The event will give manufacturing organisations and system integrators a chance to get a look at new and upcoming concepts, as well as giving them hands-on demonstrations to help future-proof their business.

“We will ensure delegates get the most out of the event, with our specialist team of technical consultants being ready and on hand to ensure attendees are more informed about these new products and services, which will continue to keep their systems more secure than ever.”

The main presentation will run from 0845 until 1300, and then the afternoon hands-on session will run until 5 pm. The whole day is free to attend, but interested delegates must register in advance on the Wonderware website.