New Titanium sensor for Emerson ultrasonic gas flowmeters @ProcessingTalk #PAuto

Emerson has released the Daniel T-200, a titanium-housed transducer, for its gas ultrasonic flow meter product line, marking the first use of metal 3D printing to enhance the acoustic performance of ultrasonic flow meters in gas custody transfer applications. The robust design of the T-200 provides increased reliability, uptime and safety while achieving the highest accuracy class attainable in gas flow measurement.

In an ultrasonic flow meter, transducers generate acoustic signals that are sent back and forth across the fluid stream. The difference in the transit times of these signals is used to determine the fluid flow velocity. Signal quality and strength are critical to measurement accuracy, which is paramount in custody transfer applications. An error of only 0.1% can equate to hundreds of thousands of Euros annually, in a large diameter high pressure pipeline.

“The mini-horn array of the T200 could not be made without metal 3D printing technology, making it transformational to the sound quality and performance achievable through a titanium barrier,” said Kerry Groeschel, director of ultrasonic technology, Emerson. “Emerson is committed to developing innovative solutions that help our customers achieve safer, more efficient operations.”

emerson’s-titanium-housed-gas-ultrasonic-transducer-delivers-enhanced-performance-long-term-reliability-in-extreme-wet-sour-corrosive-chemical-gas-environments-en-us-6439466

This all-metal sensor housing provides a barrier from corrosive hydrocarbon fluids and wet gas, thereby extending the life of transducer components and ensuring stable performance. This unique design allows the meter to be hydrotested with transducers in place, steam cleaned while in the operating line and blown down – with no limits on the rate at which the meter can be depressurised.

The T-200 can also be safely extracted while the meter is under pressure without special high-pressure extraction tools, which reduces the possibility of greenhouse gas emissions during an extraction. The capsule which contains the piezoelectric crystal – used to create and detect the ultrasonic sound waves – is retractable as a single piece, for simplicity and ease of use.

The new design is rated for a wide range of operating conditions, including pressures from 1 bar gauge (barg)/103 Kilopascal (kPa) to 255 barg/25,855 kPa and temperatures from -50 to 125 degrees Celsius.

For more information please consult the Emerson ultrasonic flowmeter website.

E+H on course for growth in 2020

Endress+Hauser has reported on their 2019 financial year, and confirms they remain on course for growth. In 2019 the Group increased net sales by almost 8 percent, to over 2.6 billion euros. The Swiss measurement and automation technology specialist created 400 new jobs worldwide. At the end of the year the company had more than 14,300 employees.

“We have grown across all fields of activity, industries and regions,” said Matthias Altendorf, CEO of the Endress+Hauser Group. The strongest impetus came from the Asian region. However Europe, the Americas, Africa and the Middle East all developed positively, but at a much slower pace. “With good product innovations, we have set a clear benchmark in the industry.”

In 2019, order entry rose faster than sales. “Endress+Hauser has started 2020 with a significantly higher order backlog than the year before,” reported Chief Financial Officer Dr Luc Schultheiss. He confirmed that in 2019 “The Group was able to maintain return on sales at the previous year’s level. We are satisfied with our profit before taxes.”

However E+H has lower growth expectations for 2020. They anticipate sales growth in the mid-single-digit percentage range, and aim to maintain profitability. “However, there are still many uncertainties,” stressed Luc Schultheiss.

E+H will present its audited 2019 financial figures on 12 May 2020, in Basel, Switzerland.

Deutsche Telekom and Endress+Hauser co-operate over 5G data

With its campus networks, Deutsche Telekom offers an infrastructure for the smart factory of tomorrow. Together with partners from industry, Europe’s largest telecommunications company wants to further expand its 5G ecosystem for industry. In the process automation sector, Deutsche Telekom is now co-operating with Endress+Hauser.

The aim of the co-operation is to develop joint offers in the field of measurement and automation technology for the process industry. This involves the integration of measuring instruments and accessories into the next generation of mobile communication networks, as well as the development of digital services based on them. Both companies have signed a corresponding memorandum of understanding and are now working on a co-ordinated timetable.

Measuring instruments with a mobile communication module

Endress+Hauser is one of the first manufacturers to equip its field devices with mobile communication modules and to connect existing installations to 5G networks – via newly developed HART gateways. This enables a large number of instruments to transmit a wealth of process and device data in parallel and in real time. These can, for example, be used in cloud applications for the predictive maintenance of process plants.

Campus networks open second signal path

“In addition to the actual measured values, our instruments record a wealth of information from the process and about the sensor,” said Matthias Altendorf, CEO of Endress+Hauser. “5G campus networks open up a second signal path that is independent of the main plant control system: this makes it possible to separately tap this potential. This will enable E+H to link value chains more closely across company boundaries and make industrial processes more efficient.”

Strong partners for smart production

“Building a complete 5G ecosystem for industry will accelerate the pace of digitalization in industry,” explains Claudia Nemat, member of the Deutsche Telekom Board of Management, Technology and Innovation. “We look forward to working with renowned and experienced partners.” In addition to the partnership with network supplier Ericsson, the telecommunications company now also cooperates with E&K Automation, a manufacturer of driverless transport systems, and Konica Minolta, which offers augmented reality glasses, among other products.

Yokogawa acquires RAP International

Yokogawa Electric Corporation has signed an agreement with UK-based RAP International (RAP) for Yokogawa to acquire the company and make RAP a wholly-owned subsidiary.

RAP specialises in providing digitised solutions that support risk assessment, management of the permit to work (PtW) process, and governance of control of work (CoW) for all plant maintenance activities.

Integrating RAP’s electronic risk assessment and PtW software solutions with Yokogawa’s real-time plant condition monitoring will improve safety assurance, reduce turnaround times, and support customers in providing enhanced protection for their people, assets, and the environment.

Manufacturing plants rely on scheduled and unscheduled maintenance activities to keep operating, ranging from daily rounds by field service personnel to the replacement of major pieces of equipment that can require shutdown of the entire plant for days or more. Control of work is the setting in place of a predetermined system for maintenance so that all necessary steps are carried out to prevent accidents and injury to people, damage to equipment, and unwarranted release of materials into the environment. However, in many plants these CoW systems are still paper-based or semi-automated through a combination of bespoke spreadsheets and document management systems, which can contribute to human error during operations.

Since 1994, RAP has been developing and implementing software solutions with integrated best practices that let customers digitise their CoW processes to make their maintenance activities safer, more accurate, and more efficient. RAPnet, its flagship product, is a comprehensive and easy to use electronic CoW system for automating maintenance processes: it is built around a large knowledge base incorporating decades of accumulated first-hand knowledge and experience. The digitised off-the-shelf solution includes standard modules for safety risk assessments, PtW management, management of change, interlocks and overrides, and isolation management. The system is complemented by consulting services as well as mobile and cloud-based functionality to fully deliver on the digital ambitions of customers. With support for 25 languages, it has already been implemented at over 150 locations in 30 countries in the oil, gas, chemical, utilities, and steel sectors.

Yokogawa provides industrial automation solutions to optimise productivity and efficiency whilst at the same time assuring plant safety and asset integrity. The company offers solutions that can monitor the health of plant equipment, and a digital platforms to support field maintenance. RAP solutions will further enhance the Yokogawa asset and safety assurance value proposition. Yokogawa will expand the availability of RAP consultancy services and road-tested systems through its global sales network, starting in Europe. The company will also carry out development work to integrate these into its existing technology portfolio and create a digital transformation platform that enables real-time monitoring of both plant assets and maintenance procedures.

Simon Rogers, head of the Yokogawa Advanced Solutions Division, commented: “Yokogawa believes that to create unique value for our customers it is important to integrate domain knowledge into the technology solutions we deliver. RAP systems are built around manufacturing industry best practices developed over the past 25 years, enabling customers to digitise and transform their maintenance safety processes, better protect their workforce, and improve operational efficiency. One of the strategies laid out in our Transformation 2020 mid-term business plan is to expand our OPEX business, so in line with that we look forward to making this outstanding addition to Yokogawa’s safety assurance portfolio available to our customers around the world as soon as possible.”

Nokia Open Innovation Challenge

Selected start-ups working on solutions for the future of industrial automation are eligible to collaborate with Nokia and Nokia Bell Labs experts can  receive up to USD175,000 in financial support to help grow their businesses.

Technology start-ups with innovative and disruptive solutions for the emerging industrial automation era are invited to compete in this year’s Nokia Open Innovation Challenge (NOIC). Winners of this global competition will be provided with up to USD175k in financial assistance, and will have the opportunity to collaborate with experts from Nokia and Nokia Bell Labs to help grow their businesses by unleashing new levels of productivity for the industrial and public sectors.

This year’s NOIC specifically seeks out start-ups with disruptive ideas in industrial automation categories such as multi-robot collaboration, VR/AR driven human augmentation for industrial and enterprise use cases, digital personal assistants in enterprises, human machine / machine human communication technologies, edge computing, and artificial intelligence and related technologies.

NOIC Competition

Marcus Weldon, President of Nokia Bell Labs and Corporate CTO of Nokia, commented: “We believe that in the coming fourth industrial revolution, a convergence of operations technology (OT) and information and communication technology (ICT) will be the catalyst for wide scale automation in all industries and infrastructure – and our physical world as a whole. This will usher in a new era of productivity for many sectors of the economy. As we roll out end-to-end 5G around the world to deliver high performance local and wide area connectivity services, we are excited to connect with innovative start-ups, to allow them to come and collaborate with our experts, and for us to be able to support them to help grow their businesses and shape the future of industrial automation.”

The NOIC competition is organized in partnership with NGP Capital, a global venture capital firm, backed by Nokia.  NGP Capital has 14 years of expertise in evaluating, investing, and accelerating promising growth-stage companies from all around the world.

Bo Ilsoe, a partner at NGP Capital, commented: “We have met thousands of founders, invested in over 90 companies, and helped several all the way into outcomes like an IPO or merger/acquisition. In this NOIC competition, we will pay attention to great founding teams, who can demonstrate their deep domain expertise and prove they have the abilities to scale their business globally.”

Last year’s winner

The annual NOIC event offers the opportunity for pioneering start-up companies to showcase best-in-class products and solutions within the Industrial Automation domain. This year marks the seventh year of this global competition; the winner of the last similar competition was Spark Microsystems, a Montreal-based business that manufactures low power wireless transceiver chipsets designed for the Internet of Things (IoT).

For Spark Microsystems, CEO Fares Mubarak added: “We were honoured to win the NOIC 2018 competition amongst a stellar group of innovative companies. This recognition provided credible validation of our innovation from a technology leader and pioneer in our field, and had a significant positive impact on our employees, partners, customers and investors. We have already identified multiple collaboration opportunities within Nokia, with the help of the NOIC team, which is very timely as we are within a year of full production. We strongly encourage all start-ups to apply to NOIC, and expose their innovation ideas on one of technology’s highest stages.”

How to apply

Start-up businesses that want to enter need to submit their entries by June 30, 2019.  The NOIC competition’s website contains the complete rules and guidelines. Finalists will be brought to a mentoring event this autumn at Nokia Bell Labs in Murray Hill (NJ), where they will meet with leading innovators in Nokia and have access to lab resources to help refine the pitch for their innovations.

The selected finalists will then present their proposals to an international jury at an event located at Nokia’s global headquarters in Espoo, Finland. The selection jury will be chaired by Marcus Weldon and include business and technology leaders from across Nokia, Nokia Bell Labs and NGP Capital.

New Process Gas Analyser for CEM

A new hybrid laser based process gas analyser now introduced by Emerson Automation Solutions has the potential to reduce the cost and complexity of CEM systems. It requires no consumables and needs minimal maintenance.

emerson’s-new-hybrid-laser-process-gas-analyzer-reduces-costs-for-continuous-emissions-monitoring-en-us-5390018

In the midst of increasing compliance demands for emissions monitoring and nitrogen oxide (NOx) measurement in industrial applications, companies now have the opportunity to move beyond costly consumables and complex gas sample treatment associated with ageing, legacy measurement systems. The new Rosemount CT4400 Continuous Gas Analyser from Emerson is the world’s first purpose-built Quantum Cascade Laser (QCL) and Tunable Diode Laser (TDL) analyser designed to help plants reduce ownership costs and report emissions accurately in environmental monitoring applications. It gives simple measurements of all standard gases of interest, such as nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), and oxygen (O2).

Optimised for cold and dry applications running at ambient pressure, the Rosemount CT4400 analyser offers the benefits of QCL/TDL technology, including high sensitivity, accuracy, improved stability, and low-drift performance in a configuration that allows fast, easy integration into existing plant infrastructure.

“Our customers are looking for a better way to measure emissions without the on-going high costs or need for frequent calibration and complex sample preparation that requires NOx converters or ozone generators,” said Paul Miller, managing director for Rosemount Quantum Cascade laser analysers, a part of Emerson Automation Solutions. “The Rosemount CT4400 Continuous Gas Analyser gives them an answer to their exact requirements in a configuration they can just plug into their existing systems and be off and running – at a lower cost than previously possible. The reduced complexity of the system over what most companies are used to, results in higher reliability and analyser availability with a lot less personnel time required.”

Because the system can hold up to four laser modules, it can measure up to seven application-specific gas components simultaneously, providing great flexibility in continuous emissions monitoring systems (CEMS) applications. This simultaneous, multi-component analysis within a single analyser reduces the need for multiple analysers, and thus the cost.

At the heart of the Rosemount CT4400 is Emerson’s QCL technology, which detects and measures gas molecules in both the near- and mid-infrared wavelength range. The system employs a patented laser ‘chirp’ technique that enables the detection of individual gas species, free from the cross-interference effects of other gas components in the stream, making the measurement highly accurate and stable down to sub ppm concentrations. This high performance ensures operators meet increasingly demanding regulatory requirements, while real-time reporting provides critical insight into process performance.

Due to its purpose-built design, which produces enhanced performance at a lower cost, the Rosemount CT4400 Continuous Gas Analyser ensures reliable detection and monitoring of gases and allows operators to avoid costly regulatory fines or unexpected shutdowns.

More information on the Rosemount CT4400 Continuous Gas Analyser can be found at www.Emerson.com/RosemountCT4400.

Rosemount GWR complies with API 18.2 for Custody Transfer

High-performance version of Rosemount 3308 GWR Wireless Level Transmitter delivers enhanced accuracy that can be verified without opening the thief hatch, thereby increasing safety.

rosemount-3308-wireless-gwr-transmitter-2-singleEmerson has introduced a high-performance version of its Rosemount 3308 Guided Wave Radar (GWR) Wireless Level Transmitter that complies with the API 18.2 standard guidance for crude oil custody transfer from small lease tanks. The Rosemount 3308 is therefore said to to be the first standalone wireless radar level device to achieve this. The transmitter delivers enhanced accuracy – and also offers performance verification without having to open a tank’s thief hatch, thereby increasing safety.

“The API 18.2 standard places strict accuracy demands on level measurement instrumentation because any uncertainty during custody transfer can have significant financial implications,” said Christoffer Widahl, product management lead with the Emerson measurement and analytical business. “Measurement precision is essential in these applications, and the enhanced performance of the Rosemount 3308 delivers the high accuracy required to reduce uncertainty and comply with API 18.2.”

This new model uses an upgraded microwave module, which makes the Rosemount 3308 more tolerant to difficult process conditions and therefore able to deliver a more sensitive and repeatable measurement with high accuracy. API 18.2 requires level transmitters to operate with 1/8” (3mm) resolution and 3/16” (4.7mm) measurement accuracy, which the Rosemount 3308 achieves when set up in the new high-performance mode. This then enables it to achieve the installed accuracy of 1/4” (6.3mm) required to comply with API 18.2. In standard mode, the accuracy of the device has been improved to 1/5” (5mm).

Accuracy can be easily verified in just a few minutes using the Rosemount VeriCase mobile verification tool. This straightforward procedure does not require a tank’s thief hatch to be opened or any product to be transferred. [Opening the thief hatch can cause high concentrations of hydrocarbon gases and vapours to be released, putting worker health at risk, so eliminating this requirement is an important safety improvement.]

In addition to providing the accuracy required for custody transfer applications, the Rosemount 3308 also delivers reliability in both continuous surface level measurement and interface monitoring applications. It satisfies many applications across refineries, oil fields, offshore platforms and chemical plants, thereby providing a cost-effective standardised solution across an entire facility. The Rosemount 3308 is a top-mounted device that is virtually unaffected by changing process conditions such as density, conductivity, temperature and pressure, and because it does not have moving parts, no re-calibration is required, and maintenance is minimised. A wide range of process connections, probe styles and accessories ensure application flexibility.

For applications involving interfaces, the high accuracy of the Rosemount 3308 helps to maintain product separation by issuing an early warning if an interface is identified where there should be only one liquid. By eliminating this uncertainty and optimising product quality, the unit can help to produce significant savings for end users.

Wireless technology significantly reduces installation and configuration time for level measurement applications and can typically reduce costs by at least 30 percent compared with a wired solution. The Rosemount 3308 can be installed and operating in less than an hour – reliably transmitting data via a wireless gateway to a control system or data historian. Status information and device diagnostics are easily accessible from the control room, reducing maintenance requirements and enhancing operator safety by eliminating unnecessary field trips.