Time-Sensitive Networking in Profinet

Bob Squirrell of PI and the UK Profibus Group advises that Time-sensitive Networking is planned for integration into Profinet. The release is as follows: 

“A promising new IEEE technology for Ethernet that combines the bandwidth of IT (information technology) networks with the latency of OT (operational technology) networks is in the offing in the form of TSN (Time-sensitive Networking). TSN consists of a tool kit of standardized mechanisms that can be used in Ethernet-based networks. In the PI (Profibus & Profinet International) “Industry 4.0” working group, the requirements and goals for the future use of TSN in Profinet have now been worked out.

unnamed

The focus of the work is first and foremost on easy handling for Profinet users. They should be able to use the new technology easily in their devices or systems while still taking advantage of the existing knowledge. Furthermore, services such as diagnosis, parameterization, etc. should be identical as in the current landscape. The engineering, i.e. the configuration of the network, should also be performed in the familiar way. In this way PI permits an easy transition to the new Ethernet landscape and ensures broad acceptance among users.

In addition, PI relies on standard Ethernet technology so it can both draw on a broad selection of Ethernet chips for the implementation of the Profinet interface on devices and also benefit from the further developments of IEEE technology such as gigabit bandwidths. Furthermore, synchronous networks can be implemented for isochronous applications with TSN. Previously, networks had to be set up separately and integrated in dedicated chips in the devices. This is the only way to ensure not only that Profinet remains future-proof for users, but also that simpler setups will be possible.

Besides a stack architecture that is easy to integrate and scale, a further crucial goal for the use of the technology is a high degree of determinism and robustness to IP-based traffic that is not real-time capable. The reliability increases, since TSN allows bandwidth to be reserved on the network for individual tasks so they are not disrupted by other traffic. This is especially important, since a variety of protocols will be used side by side in future in Industry 4.0 networks. In this way PI incorporates parallel communication via OPC UA between stations on the system level or from devices on the field level to the cloud right from the start.

However, with the introduction of TSN, it is also necessary to simplify the engineering of the network for more complex systems, until they become plug-and-work-capable networks that permit reconfiguration during ongoing operation. In addition, the TSN mechanisms that arise alongside the real-time protocol procedure offer the options that PI is consistently pursuing.

Karsten Schneider, Chairman of PI, summarizes the benefits of this approach thus: “PI will expand Profinet with the mechanisms of TSN in layer 2, retaining the application layer on the higher levels. This makes it possible to migrate the applications to the new technology simply and incrementally and to take advantage of the advantages of an open, globally standardized IT technology.”

 

Battery Energy Storage Systems help UK power efficiency

Nidec ASI, of Milan in Italy, part of the appliance, commercial and industrial motor business of Nidec in Japan, has won an order from the UK-based EDF Energy Renewables business for the installation and supply of a second Battery Energy Storage System (BESS), for use on the British National Grid.

EDF ER, a renewable energy developer, is a JV company between EDF Energy in the UK and EDF Energies Nouvelles in France. As a result of this new contract, Nidec ASI will act as an EPC (engineering, procurement, and construction) contractor to supply the 49 MW BESS system that EDF ER is building to serve the National Grid, the British electricity distribution company. The contract, which follows closely after an earlier large-scale deal for a 10 MW battery energy storage system (also for National Grid) makes Nidec ASI reach a 33% market share in the British BESS systems market.

As renewable energy resources are more widely used – to reduce the environmental impact of power generation – investments in battery energy storage systems are becoming increasingly prominent. These stabilise the power grid by temporarily storing any surplus electricity generation, and discharging the saved electricity during power shortages. Last November Nidec ASI delivered the world’s largest (90 MW) BESS system to major electricity firm STEAG of Germany. As a leader in the BESS market, Nidec is committed to stabilizing the world’s power grids and contributing to realizing a low-carbon society via the spread and expansion of battery energy storage systems and high-quality state-of-the-art equipment.

EDF West Burton 2

The BESS will be installed at the EDF Energy West Burton site in Nottinghamshire, pictured above, to support the UK’s National grid.

Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.

KROHNE emphasises networking R+D with new CTO Attila Bilgic

The Advisory Board of the Krohne Group has appointed Dr Ing Attila Bilgic as CTO and Managing Director of Ludwig Krohne GmbH & Co KG. He assumes global responsibility for research and development (R+D) and extends the managing board of the Krohne Group alongside the existing Directors, Michael Rademacher-Dubbick and Stephan Neuburger.

attila_bilgic_15cm_breit_72dpi_rgb

New Krohne CTO Dr Attila Bilgic

Dr Bilgic’s main task is the “digitization” of the Krohne measuring devices and measuring systems, their networking and their integration amongst themselves, as well as with and into the digital systems of the users. The area of “smart sensors”, which Krohne has already pioneered with various research projects under his leadership, is also of particular significance. With more than 350 employees, The Krohne Group currently employs about 10% of all staff in research and development, with more than 350 R+D employees and a budget of approximately 8% of the total group turnover (in 2015 the turnover was approximately EURO 500 million).

The topic of networking has been the major topic in the previous career of Dr. Bilgic: prior to joining Krohne, he held various positions in the “Communication Solutions” division of Infineon Technologies AG from 2000 to 2009, most recently as Director of System Engineering. From 2007 to 2009, he was head of the Department of Integrated Systems at the Ruhr-Universität Bochum. Since 2016, he has been a member of the board of the VDI / VDE Society of Measuring and Automation Technology. He is also a member of the German Physical Society and the Institute of Electrical and Electronics Engineers (IEEE).

Remaining Useful Life analysis via the Senseye cloud @ProcessingTalk #PAuto

Senseye, the Uptime-as-a-Service specialists, has launched a new version  of its automatic condition monitoring and prognostics software, which offers their ‘Remaining Useful Life’ calculations to all customers – whether they operate 10 or 10,000 assets. Senseye is unique in offering automated condition monitoring combined with Remaining Useful Life analysis.

Knowing the Remaining Useful Life of machinery helps their industrial clients to implement cost-effective predictive maintenance, typically leading to a 10-40% reduction in maintenance costs and a parallel downtime reduction of 30-50%. The software has already been adopted by a major automotive OEM, helping them to avoid their downtime cost – which is over $2m per hour.

Up until now, the Remaining Useful Life measurement has been an academic focus, accessible only to those with extensive data engineering skills.  The patent-pending Senseye technology makes it accessible to all. The automated analysis is designed to be easy to use by maintenance teams and managers and is backed by Senseye’s extensive background in condition monitoring, based on experience in the highly competitive aerospace and defence industries.

Robert Russell, Senseye CTO commented: “Being able to see the Remaining Useful Life of machinery – without requiring expert input – empowers site maintenance engineers to get maximum value from their condition monitoring solutions”.

Trusted by a number of Fortune 100 companies, Senseye offers a leading cloud-based condition monitoring and prognostics product. Their award-winning solutions are usable from day one and available as a simple subscription service, enabling customers to rapidly expand their predictive maintenance programs.

Wonderware Ireland Event in March

Industrial software provider Wonderware Ireland is to host a special event at Fota Island Resort, Cork, where it will give manufacturers and system integrators an exclusive look at the latest Wonderware developments.

On 29th March 2017, the “Next Generation Roadshow” will explore Wonderware’s latest innovations, as well as providing delegates with a greater understanding of the future of the industrial landscape and how they can ensure they are prepared for it.

The day will begin with a look into the advances of digitisation within industrial automation, before discussing the OT (Operational Technology) networking landscape and how to manage operational Big Data.

Wonderware Ireland will also introduce their Next Generation SCADA system – an upcoming release developed to provide greater simplicity, flexibility and scope. The Next Generation SCADA improvements include an enhanced UI visual experience with “out-of-the-box” content and process visualisation standards, web-based access and a heightened ability to access and aggregate IIoT data.

An optional afternoon session will then see Systems Architects take attendees through a practical workshop. This will allow them to get hands-on with the technologies that are bringing connected and future-proof industrial environments into fruition, before finishing with an opportunity to discuss issues one-on-one with the Wonderware technical experts.

Aidan Finnegan, Wonderware Regional Manager for Ireland, said: “Following the success of the new-concept Wonderware event late last year, we decided to bring the roadshow back to the Fota Island Resort in Cork. The event will give manufacturing organisations and system integrators a chance to get a look at new and upcoming concepts, as well as giving them hands-on demonstrations to help future-proof their business.

“We will ensure delegates get the most out of the event, with our specialist team of technical consultants being ready and on hand to ensure attendees are more informed about these new products and services, which will continue to keep their systems more secure than ever.”

The main presentation will run from 0845 until 1300, and then the afternoon hands-on session will run until 5 pm. The whole day is free to attend, but interested delegates must register in advance on the Wonderware website.

Training on Profibus, Profinet and IO-Link in Industrial Automation

A highly informative training day will address the key practical issues arising from the use of these digital communications technologies in automated manufacturing applications. The event is free of charge, and will be held from 0900 to 1530 on 29th March in Manchester, UK. On 30th March there will be a similar FOC event for users in the Process and Hybrid industries.

With particular emphasis on Industry 4.0 and the Industrial Internet of Things, the event will cover the use of Profibus, Profinet and IO-Link in key application areas such as utilities, pharmaceutical, packaging, printing, electrical and electronics assembly, robotics, automotive engineering, mechanical handling and logistics, control systems and energy management, from system design and safety considerations through to maintenance and fault-finding.

Supported by demonstrations of actual tools used in configuration and maintenance, the seminar will be of great value to Designers, Production/System Engineers, Instrument Technicians/Engineers and C&I Engineers involved in design, operation and maintenance of modern automated factories and process plant.

The presentations include:

Introduction of Exhibitor stands and Profibus & Profinet Update, by Mark Freeman: Profibus DP – Successful Commissioning and Maintenance, by Dave Tomlin: EMC and Equipotential Bonding in Profibus and Profinet networks, and EN503102016, by Peter Thomas: PROFIsafe as a tool for Safety in Automation and Control Networks,by Peter Brown; Designing a Profinet system, by Andy Verwer: Profibus system engineering and monitoring, by Andy Verwer: Profinet for IoT, IIoT and Industry 4.0, by Derek Lane: The Features and Benefits of IO-Link, by Russell Smith.

Coffee breaks and lunch will be provided, for delegates also to visit the Exhibition of relevant equipment.

This seminar is ably presented by network specialists from member companies of PI UK, the not-for-profit trade association dedicated to support of advanced manufacturing technologies for the benefit of UK industry. Attendance is free of charge to pre-registered delegates from the user community, i.e. companies that own, operate, design, build or maintain automated plant. The event will provide delegates with an excellent networking opportunity and the ability to speak to the varied experts from the PI UK membership.

For more information please contact PI UK, or send an email enquiry. Online registration is now open.

For companies in the Process & Hybrid Industries …

Companies involved in the Process Industries may be interested to attend another of the PI UK events, to be held in Manchester the following day, March 30th. Entitled Practical Aspects of Profibus and Profinet in Process, the event specifically addresses the key issues involved in the use of advanced network communications in Process and Hybrid Industry applications.

More information on this event is available here, or send an email enquiry.