The value of Specialist Automation Suppliers

Engineers around the world are looking at how to benefit from the various solutions to the IIOT on offer: the article posted on 2 February entitled “How DCS Vendors see their IIOT future” covered the approaches being adopted by some of the major DCS vendors. This follow-up article, written for and first published in South Africa, in the Technews South African Instrumentation & Control Journal, March 2017, covers the approach of some of the smaller, specialist suppliers to their own selected sectors of the process industries.

While the major DCS suppliers try to work out how to provide revenue earning services from the growth of the IIOT, there are many specialist engineering product and systems suppliers who are investing in making their products easier for engineers to use in networks, and operate within the IIOT.

Most of these specialists are primarily focussed on the production of their valves, sensors, controllers or drives: this is their business – and they need their products to work with any interface the customer requires. Their expertise in interfacing their own products is the best available, they have an in-house systems knowledge base and capability. Most now offer this capability to their would-be product users as a service – offering a custom designed system incorporating the products. So look to these suppliers to offer the best engineering at an economic price, within their specialist field.

Typically these single-minded companies were set up by a design engineer with a good original product idea, and this has been developed and refined over the years. Often the company is family owned – and engineering / R&D investment takes precedence over profit distribution. Some such companies still exist in the USA, and a few in the UK, like JCB and Rolls Royce. Several specialist engineering product examples are found in suppliers originating from Germany, Scandinavia and middle Europe, where the culture seems to have encouraged their survival.

Beckhoff Automation

Arnold Beckhoff started his company in 1953: Beckhoff Automation now has a turnover of Euro 620 million, and employs 3350 people. The company implements open automation systems based on PC control technology, scalable from high performance Industrial PCs to mini PLCs, I/O and fieldbus components, plus drive technology and automation software. Supplying systems to many industries, Beckhoff works with and supplies components for over 15 major fieldbus systems. Motion control solutions solve single and multiple axis positioning tasks, and their servomotors offer combined power and feedback over a standard motor cable.

The Beckhoff TwinCAT 3 engineering and control automation software integrates real-time control with PLC, NC and CNC functions in a single package, and then all Beckhoff controllers are programmed using TwinCAT in accordance with IEC 61131-3. While the built-in TwinCAT condition monitoring libraries allow the on-site controllers to monitor the status of the sensors, to reduce downtime and maintenance costs, it also allows wider comparisons with connections to such cloud services as Microsoft Azure or Amazon Web Services. Other data connections are available, for example a smartphone app enables immediate local and mobile display of a machine‘s alarm and status messages.

Bürkert Fluid Control Systems

Bürkert was founded in 1946 by Christian Bürkert: it now has sales of Euro 412 million and employs over 2500 people. The product base is gas and liquid control valves, systems for measuring and controlling gases and liquids, plus sensors for monitoring such fluids, extending to complete automation solutions and fluid systems – this capability is known as their ‘Systemhaus’. While their products are now applied across many industries, their particular specialisations have been in sanitary, sterile and hygienic applications (food, beverage, biotech and pharmaceuticals), micro applications (medical, inkjet and beverage mixing/vending), and water treatment industries.

From the UK operation, Bürkert provide locally engineered solutions and systems for their pharma, food and brewery customers in particular. Locally made craft beers are a major growth area in the UK, and most start small, with no real automation. One example was Stroud Brewery, who needed to expand production by a factor of 5x, and preferably not increase their staff numbers: Bürkert designed a PLC system and intelligent control panel, which automated the temperature control of the cold and hot liquor tanks, and in the mash pan. In addition a system for controlling the run-off rate from the mash tun simply uses three separate Bürkert level sensors.

Bürkert also have developed their own ‘Device Cloud’, they call this ‘mySITE’. This collects data from Bürkert sensors around the world, using an on-site interface known as mxConnect – which can also accept data inputs from other sensors.

National Instruments

National Instruments was only started in 1976, in the USA, by Dr James Truchard and a colleague, who are still involved in the business. Now sales are $1320 million, and they have 7400 employees worldwide. Their declared Mission is to “equip scientists and engineers with systems that accelerate productivity, innovation, and discovery” – and their focus has always been to supply research establishments and engineers with open, software-centric platforms with modular, expandable hardware. This gives its own logistics problems, with 35,000 customers served annually.

It is difficult for me, as an outside observer, to relate the NI systems to an oil refinery or chemical plant application: but it comes into its own when the data handling grows in complexity – for example in pharmaceutical and biotech applications, and the sort of plants where engineers have a major input in monitoring the application. Mention cyclotron or Tokomak, CERN or the Large Hadron Collider, and NI and its LabView are embedded in their engineering control systems. All 108 collimators on the LHC are position controlled using LabView.

National Grid UK, which controls the distribution and transmission of electric power round the country, has adopted a control system based on the NI CompactRIO for the whole network. With many new power generating sources, HVDC connections, variable inputs from solar and wind farms, and the phasing out of major fossil fuelled plants, National Grid found that traditional measurement systems did not offer adequate coverage or response speed to handle these new challenges and risks. They adopted a platform, based on the CompactRIO, to provide more measurements – and also adapt with the evolving grid for generations to come. This interconnected network includes 136 systems, with 110 permanently installed in substations throughout England and Wales and 26 portable units that provide on-the-go spot coverage as needed.  The associated software systems provide their engineers with customized measurement solutions that can be upgraded in the future as new grid modernization challenges arise.

In terms of IoT developments, NI has just opened an Industrial IoT lab at the NI Austin HQ in the USA, to focus on intelligent systems that connect operational technology, information technology and the companies working on these systems. Many other companies are co-operating in this venture, like Cisco and SparkCognition, and the lab intends to foster such collaboration to improve overall interoperability. In addition NI has partnered with IBM and SparkCognition to collaborate on a condition monitoring and predictive maintenance testbed: this will use the SparkCognition cognitive analytics to proactively avoid unplanned equipment fatigue and failure of critical assets.

(c) Nick Denbow 2017

Yokogawa/Cosasco ISA100 deal

Yokogawa has signed a sales agreement with Rohrback Cosasco Systems, a US-based manufacturer of corrosion monitoring systems to distribute the Cosasco ISA100 wireless-based MWT-3905 and CWT-9020 corrosion monitors: also Cosasco will distribute the Yokogawa ISA field wireless system devices. Yokogawa systems operating to ISA100.11a-2011 include an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

Yokogawa therefore has now added corrosion sensors to its line-up of field wireless devices that help customers efficiently maintain facilities and ensure safety at their plants. For Cosasco, the ability to offer its corrosion monitors in combination with Yokogawa field wireless devices is expected to increase sales.

Yokogawa Objectives

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Yokogawa has developed ISA100 Wireless-based technologies and products such as wireless access points and management stations, and Cosasco has a long global track record in supplying various kinds of corrosion monitors to the oil and gas, petrochemical, chemical, and other industries. Through this agreement, Yokogawa aims to increase sales for its field wireless business by being able to offer a wider field wireless device lineup.

Cosasco Wireless Corrosion Monitors

Yokogawa IA - Cosasco MWT-3905 corrosion monitorCorrosion sensors monitor the thinning or deterioration of the metal walls of pipes and other installations. A variety of technologies are employed, including electrical resistance and ultrasonics. The Cosasco MWT-3905 and CWT-9020, the devices covered by this sales agreement, are direct measuring type corrosion sensors that use high speed electrical resistance and linear polarisation resistance (LPR) technology. This enables corrosion rate measurement at a low installed cost in all process environments, including hazardous areas. The units are particularly applied for the monitoring of corrosion in facilities at offshore platforms and other types of oil and gas installations, plus petrochemical plants, chemical plants, and water and sewage treatment plants.

Rohrback Cosasco is a part of Halma plc, a UK conglomerate.