Noise mapping offshore using wireless sensors

Many of the latest technology developments in relation to offshore oil and gas production installations have emerged from Norwegian research studies, because that industry represents the major part of the economy in Norway.  Such research studies do not only relate to better and more efficient methods of working, but they also investigate the health and safety aspects of the industry: an area of particular concern has been hearing damage to workers offshore, which is the predominant cause of work related illness. At the Yokogawa User Group meeting held in Budapest in May 2016, Simon Carlsen of Statoil ASA in Norway explained the background to a recent project that was undertaken to improve the efficiency of the noise surveillance and monitoring systems Statoil use offshore. This was also presented to a Society of Petroleum Engineers International conference on Health and Safety in Stavanger in April (Ref 1).

picture-3-from-pdf

The main Health & Safety tool used for monitoring noise exposure is the ‘Noise map’, which provides noise level contours within rooms and around machinery where workers are active. These are used to establish a course of action where noise levels exceed allowed limits, whether this action is to reduce or remove the noise source (if possible), insulate the area, issue PPE to workers, and/or impose working time restrictions. Noise maps have historically been based on manual surveys that take single point readings, which are then plotted onto a site map, typically from CAD drawings. Manually taking and plotting these measurements is arduous and time consuming, and typically would be updated only on around a four year cycle. Plus the readings are (obviously) not continuous, only record the conditions when each reading was taken, and generally do not record the added effects from workers using different machinery and tools in the area.

Statoil R&D on wireless & noise instrumentation

Simon Carlsen of Statoil joined the R&D Department in 2006, bringing expertise in wireless instrumentation, and started investigating the feasibility of using wireless sensors and software techniques to create a real-time noise map. The system subsequently commenced became known as WiNoS, for “Wireless Noise Surveillance”, when formally initialised in 2013. This will consist of a network of wireless noise sensors, continuously monitoring the noise in the process area, using sound pressure level (SPL) measurements of four types: A-weighted SPL (I.eqA), C-weighted SPL (I.eqC), peak SPL (I.peak) and thirty one separate third-of-an-octave frequency band measurements from 25Hz to 16kHz. This data is much more comprehensive than the simple noise level measurements used to establish the noise maps, but will superimpose this data onto the historically available maps. These readings can then be used to update the map in real time, and create alarms available to operators.

The WiNoS sensors then use an industry standard wireless network infrastructure, which transmits the data into the control system, where special software produces the updates to the noise maps – typically on a one minute update rate (ie almost continuous). This live information can be used to create alarms to report back to workers in the area, to control their noise exposure. The objective is to reduce work-related hearing damage, by knowing the actual on-site conditions; to optimize operator time working on/near tools, to reduce daily exposure; and to provide instant feedback on the effect of noise reduction measures. In addition WiNoS allows for time synchronized measurements amongst the sensors in the network, and also allows the control room operator to trigger a download of a high resolution frequency spectrum waveform from any sensor of particular interest, to analyse the signature of the noise. This latter is a major part of the future development of the monitoring system, which will feed into plant condition and process performance monitoring studies.

noise-map-3

The WiNoS project development employed the expertise of the Norwegian companies Norsonic AS in the microphone design and the sound level measurements, and the Department of Acoustics at the research company SINTEF to develop the PC software that records the data and creates the noise maps. The software was also required to conform to the Statoil qualified communications protocol.

Choice of wireless network

A major part of the research feasibility study that preceded the WiNoS project was devoted to the choice of the wireless network to be used to efficiently and reliably transmit the data, relatively continuously from multiple sensors. The two suitable networks that were emerging at that time were WirelessHART and ISA100.

The WirelessHART system is now well-known and fairly widely used in Statoil facilities, but the early research trials showed mixed experience with the system and the relevant vendors – some of this was related to the lack of specification details written into the WirelessHART standard. But there were also challenges with achieving the power efficiency in the transfer of all the data required, and the requested large data transfer of the high-res waveform was not readily achievable.

The ISA100.11a wireless transmission standard was also in use in Statoil, and had been adopted for the wireless flammable gas detector pioneered by GasSecure in Norway – Statoil had been involved with the prototype field trials offshore. The initial trials on ISA100 equipment from Yokogawa provided high flexibility for the different application demands, allowed all the 31 one third octave values to be packed into one transmission telegram, and allowed a well-defined block transfer. The sensor could also achieve the two year life required from the installed battery pack, at the 1 minute update rate.

The decision was made that ISA100.11a was to be the preferred protocol for WiNoS, from a technical and project model perspective. Based on the earlier experience of development co-operation with Statoil, it was decided to invite Yokogawa to join the WiNoS project as a Co-Innovation partner, a role that they were keen to develop. In addition to providing the ISA100.11a wireless interface electronics for the sensor, and the interface into the third party control system, Yokogawa worked with Norsonic to develop the mechanical housing for the microphone sensor, and the electronic hardware to process the sound measurements using the Norsonic software, with the whole sensor assembly meeting ATEX requirements.

yta510iaeueth-xx

A Yokogawa wireless temperature transmitter adapted to include the Norsonic microphone

Full system test

In March 2016, a network of 7 off Yokogawa ISA100 enabled wireless noise sensors were tested within the (land-based) industrial lab hall at Statoil Rotvoll, in Trondheim, which has dimensions 35x25x15 metres – and contains various pumps and process equipment. Further synthesized test noise sources were created using loudspeakers. The wireless sensors, the noise mapping software and the IT backhaul architecture all operated reliably and successfully.

winos-system-test

Dynamic noise map generated with the system test

 

A further test, offshore on an operational Statoil platform, is planned and scheduled for Spring 2017, for which Yokogawa will supply 20 production sensors and the ISA100.11a wireless system. A typical platform deck of 50×50 metres might in practice require around 12 noise sensors for effective coverage.

isa100_yta-a-xx

Possibly future noise mapping sensors will be added in high noise plant areas

The Statoil WiNoS system is now ready for development into a commercially available product for use as an offshore platform noise mapping tool. Future research on this system will involve investigation of 3D noise mapping systems. Statoil consider that the equipment application has potential for expansion into machinery condition monitoring, to include automatic process upset or fault and leak detection.

© Nickdenbow, Processingtalk.info, 2016

References

 

Total Exploration and Production chooses Emerson maintenance services

Emerson has been selected by Total Exploration and Production Services to provide control and safety system maintenance services that will support Total’s upstream oil and gas operations around the whole world.

The ten-year frame agreement is part of Total’s Integrated Control and Safety Systems standardisation strategy. It is the first of its kind between Total and an automation systems provider and formalises the already robust relationship between the two companies.

Emerson will be responsible for servicing, maintenance, obsolescence planning, on-call application support, spare parts management, and reporting activities relating to integrated control and safety systems used in selected Total onshore and offshore sites. This includes Emerson’s DeltaV distributed control systems and DeltaV SIS safety systems, along with its AMS asset management software.

“This agreement strengthens Emerson’s excellent relationship with Total and enables our services team to support Total in its continuous efforts to optimise the efficiency of their operations and ensure high safety performance,” said Mike Train, president of Emerson’s Automation Solutions business. “We appreciate being trusted to maintain critical automation systems that will help Total continue to run their operations safely and reliably.”

Yokogawa Analyser systems integration services

The Yokogawa Analytical instrumentation makes up a significant part of their product range, serving customers in the oil, chemicals, pharmaceuticals, natural gas and power industries. The measurement techniques used in their products include chromatography, laser-based infra-red absorption and Raman spectroscopy, as well as industrial liquid sensors for conductivity and pH monitoring. Typically many of these sensors are installed in on-site laboratories or analyser houses, which can be skid or container type units attached to the process directly or via sample lines.

YokogawaASICenterEurope_02xx

The expertise developed within Yokogawa in the installation of efficient and effective analytical installations led to the establishment of a complete analyser system supply and integration service, to provide a total package of instruments, monitoring housings, sample line interconnections and conditioning systems, ready for site installation. Such services have been operational for some years, operating from bases within the Yokogawa US and Asian business units: now with the launch of a new service in Europe, ASI or Analyser Systems Integration, the same full service will be available to European customers. This makes Yokogawa a true one-stop-shop for ASI at both green-field or brown-field projects of almost any size, thus helping project owners to simplify their supply chains as they need only deal with a single team for all analytical requirements.

ASICenterEuropeinMadrid

The Yokogawa European ASI centre in Madrid

Loek van Eijck, business unit manager, analytical solutions at Yokogawa Europe, said: “We’re very pleased to announce the introduction of Yokogawa Europe’s Analyser System Integration service. This services responds to a growing market demand within the chemical, oil & gas industry, and increasingly in other process industries, to simplify project management of both new installations and renovations. We’ll be working with our own analysers and those of 3rd-party manufacturers, but it makes sense for project owners and primary contractors to deal with a single integrator of analytical systems, and for that integrator to be a supplier of instruments being installed.”

One of the major issues facing project managers is finding a team with the right skills and experience for specialist areas of project implementation. Yokogawa’s ASI service guarantees access to design and implementation engineers with the highest levels of qualification and certification. The highly skilled project management team is fully certified by Project Management Professional (PMP), while the engineering team designs solutions to the explosion-proof standards specified by ATEX, IECEx and all other relevant standards and legislative bodies, making design compliance easier to prove. They are backed up by a professional execution team with more than 150 years of accumulated installation experience.

YokogawaASICenterEurope_01xx

Yokogawa has built a global reputation for quality and innovation, and has now applied this to its ASI service. “We believe this sets our service apart from the competition,” said van Eijck. “Yokogawa has earned its reputation through involvement in some of the industry’s largest and most innovative projects, and is now able to apply this in Europe to ASI projects of almost any size from any process industry requiring highly accurate analytical instrumentation by sharing know-how with other ASI facilities and developing synergy among Yokogawa Group Companies.” This new facility makes Yokogawa a true one-stop-shop for ASI at both green-field or brown-field projects of almost any size, thus helping project owners to simplify their supply chains. The mature European process industry has many aging plants, and these regularly require updates, renovation and modernizationto meet current and new monitoring requirements.

The service provides a full analytical services life cycle from design, fabrication and manufacturing to installation, on-site services and training. Yokogawa ASI also links up to the similar services provided by Yokogawa in its Asian and US divisions providing customers with global coverage – an obvious advantage for international organisations and projects.

The ASI service in Europe is based in Madrid, Spain. Almudena Mier, ASI location manager at Yokogawa, said; “We have created an excellent facility here for the new service which offers a great environment for the team and the projects they will work on. Madrid is well served by transport links to the rest of Europe and beyond, and has access to some great local engineering talent as well as being an attractive place to work for staff and customers who come from elsewhere in Europe.”

(c) ProcessingTalk.info, June 2016

@ProcessingTalk

#PAuto

 

Hybrid Laser Continuous Gas Analyser

Emerson has announced the release of the Rosemount CT5100 continuous gas analyser, the world’s only hybrid analyser to combine Tunable Diode Laser (TDL) and Quantum Cascade Laser (QCL) measurement technologies for process gas analysis and emissions monitoring. The CT5100 is the latest offering in the Emerson CT5000 series, providing the most comprehensive analysis available as it can detect down to sub ppm level for a range of components, while simplifying operation and significantly reducing costs. Unlike traditional continuous gas analysers, the CT5100 can measure up to 12 critical component gases and potential pollutants simultaneously within a single system – meeting local, national, and international regulatory requirements.

The CT5100 was first shown at the Emerson European Exchange in Brussels, last month, and is one of several new developments to be launched this year, following the acquisition of the company Cascade Technologies, of Stirling in Scotland in December 2014.

QCL-Image-CT5100-Ex-160420

The CT5100 operates reliably with no consumables, no in-field enclosure, and a simplified sampling system that does not require any gas conditioning to remove moisture. The new gas analyser is ideally suited for process gas analysis, continuous emissions monitoring, and ammonia slip applications.

“The increase in regulatory requirements worldwide, along with the decrease in experienced personnel in industrial plants, have paved the way for the emergence of a new generation of faster, more accurate, and easier-to-use measurement technologies,” said Ruth Lindley, product manager for QCL analysers at Emerson. “The CT5100 represents an important next step in that direction, providing unmatched sub-second response time for precise, reliable measurement of complex gases and emissions to ensure regulatory compliance and prevent costly fines or unexpected shutdowns.”

The CT5100 is a unique combination of advanced technology, high reliability, and rugged design. Its ‘laser chirp’ technique expands gas analysis in both the near- and mid-infrared range, enhancing process insight, improving overall gas analysis sensitivity and selectivity, removing cross interference, and reducing response time. The laser chirp technique produces sharp, well-defined peaks from high resolution spectroscopy that enable specificity of identified components with minimum interference and without filtration, reference cells, or chemometric manipulations.

“The CT5100 modular design and patented ability to chirp up to six lasers in one enclosure provides greatly expanded measurement capability as well as superior analyser availability and lower maintenance costs,” said Dave McMillen, North America business development manager. “Start-up and commissioning is quick and maintaining the analyser requires minimal technician time and material cost.”

For more information on the CT5100 analyser, go to www.EmersonProcess.com/GasAnalysis/QCL. Surprisingly, the CT5100 replaces the older CT5200 model, which is now made obsolete.

@ProcessingTalk

(c) ProcessingTalk.info

Emerson Enardo relief valves get WirelessHART communications

Emerson acquired Enardo, a manufacturer of pressure and vacuum relief valves based in Tulsa, Oklahoma, in late 2013. This week saw the launch of a new wireless enabled version of the Enardo pressure and vacuum relief and safety valve used on storage tanks in the oil and gas, petrochemical and pharmaceutical industries.

Enardo_950_w-bracket

By adding the Smart Wireless monitoring system operating over the Emerson WirelessHART network, the safety valves, normally located on the top of large storage tanks, can easily signal to operators in the control room that they have been triggered to either relieve a pressure or vacuum condition. Such situations can arise as a result of changes in temperature, liquid level, or both, and relief valves are essential to prevent tank over or under-pressure conditions that could lead to structural failure. Enardo pipe-away, vent-to-atmosphere, in-line and end-of-line relief valves are typically installed on storage tanks to control evaporation and fugitive emission losses that result from flammable and hazardous petroleum vapour-producing products. Knowledge of the actuation of such a safety valve enables an immediate response, where needed, to prevent problems which can be related to safety, emissions, and the quality of a tank’s content.

Steve Attri, product manager at Emerson for the Enardo valves, commented: “Until now, PVRVs have remained un-monitored, with none of the feedback loops commonly seen in other pressure control devices. As the tank’s primary pressure control device, this wirelessly-monitored solution can be invaluable.”

Enardo manufactures tank and terminal safety equipment, including hatches, vent, pressure and vacuum relief valves and flame arrestors used in the oil and gas, petrochemical, chemical and other industries. Enardo in-line and stack vent valves have been the oilfield industry standard for more than 80 years.

Prior to the acquisition by Emerson, Enardo had sales of $65m a year, and employed 140 people. It now operates within the Regulator Technologies business, previously known as Fisher Regulators, within Emerson Process Management.

© Nick Denbow ProcessingTalk.info

@ProcessingTalk

Multiple approval barriers to free trade in environmental protection systems

As a product development manager, I used to think that the supply of industrial instrumentation equipment was made particularly difficult by the plethora of International, European, American and specific industry (and country) specifications and requirements. In an age of International co-operation it seemed these approvals were designed to act as protective barriers for home industries. But these seem trivial compared to the problems faced by suppliers to the World shipping industry, in particular in relation to environmental protection.

Readers of this column over the years will have been aware that I reported enthusiastically on the Alfa Laval PureBallast treatment system for purifying ballast water discharges from ships, launched back in 2007, at Greenwich. This enthusiasm was because of both the professionalism of the launch, as well as the laudable product objective and aspiration: it was one of the best such events I had attended, despite atrocious windy weather, freak waves and thunderstorms on the boat cruise taking the Editors down to Greenwich! With slightly bigger waves there might have been no Editors left to report on the event!

BWT – Ballast Water Treatment systems

In the Alfa Laval system, light energy, from a broad spectrum source, acts on a Titanium catalyst in the flow, to produce hydroxyl ions, which oxidise and kill any organic material in the ballast discharge. This was developed in co-operation with Wallenius Water, who had done the shipboard tests on some of their ships over the previous three years. Alfa Laval launched this product in January 2007, to make it available for ship-owners in time to meet the IMO regulations that would require such equipment to be installed on all new build ships after 2009, in participating countries.

Another Scandinavian company, Optimarin from Norway, was at the same time addressing the ballast water treatment market, using Ultra-Violet light from high power UV sources (35kW) to kill any potentially harmful invasive organisms straight away. Optimarin was established in 1994 to develop this system, and supplied the first ever BWT system installed in 2000 on the Princess Cruise Line ‘Regal Princess’.

Extended approval timescales

It is significant that it is now 2016, over 20 years since Optimarin was founded, and at least 12 years after the first Alfa Laval systems were installed for sea trials on Wallenius ships. It is also 7 years after the first of the IMO regulations came into force – these did allow several years grace for older ships still operating from prior to 2009. All this makes for a very long lead time for any new product development to grow and become commercial!

Yet only in December last year did the US Coast Guard finally confirm that it would not type approve BWT systems if they failed to totally kill potentially invasive marine organisms transported in ballast water. This will exclude many ‘conventional’ UV purification systems which use lower power lamps as sources, since these render the organisms “unviable” (ie they are still alive but cannot reproduce). The approval tests carried out by DNV to prove performance to the USCG criteria (applying the CMFDA staining test method) takes up to a year, and Optimarin suggests that the testing – due for completion this year – will cost them around US$3m.

Alfa Laval also expresses confidence that their PureBallast system will meet the current USCG test criteria, and their tests will also be completed this year: at the moment, Alfa Laval points out that although US ballast water regulations took effect in 2012, no systems of any technology have yet been type approved by the USCG.

IMO, the World shipping legislative body

Indeed the IMO regulations themselves are not universally applied as yet: the “International Convention for the Control and Management of Ship’s Ballast Water & Sediments” is legislated to enter into force one year after being ratified by 30 states, representing 35% of the world’s tonnage. At present, March 2016, 46 states have ratified, representing 34.8% of the world’s tonnage – almost at the action stage! So the product is on the point of what should be a worldwide legislated requirement…..one more country to ratify the IMO proposal, with one more tanker, and a year later the market will be confirmed. Its only taken nearly 20 years for these products to become a market requirement!

The USCG requirements will have no effect on shipping using previously approved UV BWT systems in the seas and oceans outside US territorial waters.

Individual ship approvals, Insurers, and Ex regulations

The problems for the suppliers are not yet finished: for shipboard use the equipment also requires certification by a whole further range of classification organisations, like DNV GL, Lloyd’s, Bureau Veritas, MLIT Japan, and American Bureau of Shipping. Some tanker operators also require hazardous area approvals, i.e. to Zone 1 ATEX standards in Europe: Optimarin have supplied 10 such systems for the Turkish tanker fleet of Atlantis Tankers, which are designed for the transport of IMO II classified chemical cargoes.

Suppliers and users

Optimarin publish their existing major customers as comprising Saga Shipholding, MOL, Grieg Shipping Group, Gulf Offshore, Farstad Shipping, NYK, Nor Line and Evergreen Marine Corp. Since that initial installation in 2000, Optimarin have sold over 350 units, with 270 already installed. Optimarin in March announced a fleet agreement with UK shipowner and management company Carisbrook, which has the potential to cover retrofits across their entire fleet of 46 bulk and multi-purpose vessels.

Alfa Laval do not publish a customer list nor figures for the total number of their systems installed, but a PR from September 2015 discussed an Asian based shipping line placing an order for 33 systems. Another user has been quoted as MSC Containers.

Ballast water treatment retrofit work has been a major activity for Goltens Green Technologies (www.Goltens.com), a marine engineering contractor, who have already installed over 100 systems, from a current order book of 163. They supply systems from many manufacturers, listed as Optimarin, Bio-UV, Headway, Severn Trent DeNora, Alfa Laval, Auramarine, NK, Hyde Marine and Wärtsilä. Like Alfa Laval, Goltens are also involved in the supply and installation of other shipborne equipment required by and subject to environmental legislation, like SOx and NOx effluent control.

Whilst the retrofit market is important, the new build market is more significant, and obviously supplier attention is concentrated on the shipbuilders of South Korea.

© Nick Denbow, Processingtalk.info

@ProcessingTalk

Major Emerson Cat Cracker project at BP Whiting Refinery

1426688718697

A view of the BP Whiting Refinery, photo courtesy of BP

Emerson Process Management is providing process automation technologies and services to help British Petroleum (BP) further enhance the safety, reliability, and performance of its Whiting refinery in Northwest Indiana, USA – without the costly downtime often required for such projects.

The project to upgrade the process control system of two fluid catalytic cracking units is part of a strategic BP-Emerson automation upgrade programme. It follows BP’s earlier multi-billion-dollar Whiting Refinery Modernisation Project, which was one of the largest investments in BP history. Emerson also provided process automation for that massive upgrade, which helped BP boost its heavy-crude capacity more than four-fold.

The Whiting refinery is BP’s largest and a major supplier to the Midwest and other parts of the United States. One of the key benefits that Emerson brings is its experience managing “hot cutover” projects – upgrading units while the operation continues running, which helps BP maintain a secure supply of fuel for its customers. Catalytic crackers are primarily used to produce high octane gasoline in the refining process.

Emerson has already provided upgraded automation technologies for one of the cat crackers, implementing a new DeltaV distributed control system. Diagnostics available in the DeltaV system can help BP detect problems well before an unintended loss of operation, saving money and improving efficiency.

For the second cat cracker, Emerson will provide a DeltaV control system and integrated DeltaV SIS safety system. The integrated control and safety system will provide a common operations and engineering environment and access to extensive diagnostics across the unit. The complete automation upgrade also includes Emerson’s Fisher control valves and Rosemount measurement instruments.

“The ability to use our resources and experience from one stage of the upgrade programme on another stage helps BP manage project cost and schedule risks,” said Steve Sonnenberg, president of Emerson Process Management. “Our commissioning and start-up expertise developed in previous projects also helps BP safely and reliably improve performance without unexpected downtime, providing significant benefits to its customers that rely on a predictable supply of gasoline.”

New methanol plant automation

Yokogawa has received an order from Orascom E&C USA to deliver control and safety systems for the Natgasoline LLC methanol plant, which will be one of the largest methanol plants in the World. Currently under construction in Beaumont, Texas, this facility will have a capacity of approximately 1.75 million metric tons per year when it starts production in 2017.

For the process control and safety of the Lurgi MegaMethanol process technology and auxiliary facilities throughout this plant, Yokogawa will supply their Centum VP integrated production control system, ProSafe-RS safety instrumented system, Exaquantum plant information management system, and Plant Resource Manager (PRM) software package. The Yokogawa Corporation of America will be responsible for the engineering and delivery of these systems, and will provide support with installation and commissioning.

Yokogawa entered the U.S. market in 1957 and has grown the business across diverse markets, but have had particular success in the oil and gas refining and offshore production, LNG liquefaction and chemical manufacturing areas. We are proud to win the first order for a new US-based grass roots methanol plant that exceeds a million metric tons per year. This project allows us to build on our already extensive track record in executing and maintaining methanol production in North America”, said Daniel Duncan, President and CEO of Yokogawa Corporation of America.

Though the chemical industry in the USA has long relied on imported methanol, the amount of methanol produced locally is steadily increasing, because of the ready availability of ethane produced from domestically sourced shale gas. Yokogawa won this order because of its excellent track record in completing projects, and its demonstrated ability to deliver comprehensive, integrated solutions that help optimize operations.

Drones for Remote Inspection

Seeing the recent article in ‘The Engineer’ about drones for remote inspection, I thought the attached article written for my column in the the South African journal ‘SA Instrumentation and Control’, published by TechnNews (http://www.technews.co.za) in their August issue, might be of interest.

The capability for the use of UAVs (Unmanned Aerial Vehicles, or drones) for remote inspection has grown at a rapid pace over the last five years, because of the boom in wireless data communications, lighter batteries, but above all presumably because of the effort devoted to the technology from the military use of UAVs. The style that has aroused most attention in the commercial and public arena is the helicopter drone, using multi-rotor devices as platforms for cameras. So fast did this ‘take-off’, that the authorities in several countries took time to catch-up, which led to various banning orders, and then proposals for regulations and licensing of drones, and their pilots. In the UK, at least, this did not seem to stop the appearance of low cost hobby type drones for amateur use, in growing numbers in high street camera shops and gadget supplier outlets.

Cyberhawk from the UK

The first serious use of a helicopter drone for inspection duties on a petrochemical plant in the UK was reported around five years ago, from Cyberhawk, based in Edinburgh, and initially focused on the petrochemical and oil industry in Scotland and the Northern UK, plus offshore in the North Sea. Cyberhawk undertook the world’s first live gas flare inspection, using a Remotely Operated Aerial Vehicle (ROAV), flying at a height of 100m: this work was for a major Scottish gas refinery. The ROAV was flown within a few meters of the live flare: this provided highly detailed images of the condition of the flare tip and associated structure using HD video, plus still imagery and thermal imaging equipment. More important was that the work on site was carried out by Cyberhawk Inspection Engineers – all CSWIP (Certification Scheme for Welding and Inspection Personnel) qualified, who knew what they were looking for, and what was important.

Cyberhawk has expanded, and established operating bases in Norway, Malaysia and Abu Dhabi: they recently carried out their 10,000th commercial ROAV flight, which was a survey of a new power station site. The helicopter drone used was an 8 rotor type incorporating the latest triple redundant autopilot, a significantly more expensive unit than a gadget shop drone! In the USA, Aetos, a Michigan based company, has been granted a special exemption by the FAA to operate drones commercially for inspections of petrochemical plants and facilities. The Aetos CEO, Bill Donberg, had done 30 years working at Dow Chemical, and their first clients included the likes of Dow Chemical, Eastman Chemical, Exxon Mobil and Phillips 66. Their drones are built by Aeryon, and cost around US$75,000 each. The final FAA regulations covering commercial drone flights and their pilots are expected to be issued in late 2016 or 2017, but already their other “special exemptions” allow specific drone use in the movie and video industry; for real estate adverts; for agricultural monitoring and aerial surveying.

Drone flying regulation

Regulations generally accept that a landowner owns his own airspace, up to say 300 feet upwards at least, so that makes flying a drone over your property, for example to look in your windows, not permissible. The push by paparazzi photographers using drones to get ‘at home’ celebrity photos needs to be quashed. So regulations require that drones cannot fly over anywhere without the landowner’s permission. Incidentally, this brings the FAA in the USA up against Amazon, who want to trial delivery systems using drones: Amazon have threatened to move their R&D on this topic out of the USA, unless there is some progress to gaining FAA agreement. Google are doing their drone delivery system research project in Australia.

In the UK, if you intend to fly a camera equipped drone for commercial uses you will need a PfAW (Permission for Aerial Work) from the CAA.  This is issued after the requisite training of the pilot has been completed, and it is renewable annually, for a fee: several providers of approved training courses are operating. The website www.droneuav.co.uk gives useful data and links: there Ben Lovegrove of www.WessexAerialPhotography.com describes from his own experience that the training took six months and the total cost to gain the UK PfAW including accessories and insurance was around GBP3000. Ben often uses a drone made by a South African company, SteadiDrone, which is based in Knysna.

In South Africa, new regulations for operating drones were announced in May by the CAA. These regulations took effect from 1 July 2015. They follow the same patterns as being imposed in the USA and UK, and will require an operator to have a Remote Pilots License (RPL). A lot of useful information can be found on www.safedrone.co.za.

Recent applications

Many recent industrial applications use and show the capabilities of the camera equipped drone: from the beginnings of inspecting flare stacks, many more inspections have been made of offshore structures, for example oil platform legs – anywhere where putting a man up alongside the area to be inspected is difficult and hazardous.  The Royal Navy has used them to inspect the external hull areas of warships. In the UK there are many old buildings, and regrettably many of these are damaged by fire. Long after the event, structural engineers can do a detailed survey of the damage to the internal walls by flying a drone inside the building, to assess whether it is safe for engineers to enter the shell of the building at all.

The technologies now added to the drone include infra-red thermal cameras, and GPS positioning linked into the drone flying controls, to accurately position the drone, know where it is, and keep it there. These aspects can help searches for hot spots (ie electrical faults) on solar power farms, or electricity distribution networks, and for locating steam or gas leaks – or insulation failures – on petrochemical plant pipework.

French Railways

Some of the start-up companies providing drone inspection services seem to emerge from research projects based in University Departments. A typical surprising application was described at InnoRobo, the robot technology exhibition in Lyon in March 2014 – see the reports in the INSIDER and elsewhere in this blog. Philippe Bidaud of GdR-Robotique, the French co-ordinating body for robotics research in Government institutions, reported on the use by CNRS, the French Railways, of drones on civil engineering survey work: monitoring railway lines across bridges and other structures from the air. Flying at 150m, these drones can monitor rail line positioning to within 2mm. In The Netherlands a company spun out of the Aerospace Engineering Department from the Delft University of Technology has specialized in building robot helicopters: their latest multi-copter will automatically take-off and land from a transport box, so reducing the workload for the operator.  The University has also pioneered various research projects to improve the situational awareness of the operators of these drones to other air traffic, so that they can be used more effectively for Police and Military operations in urban areas. Further partners are being sought for this work, as well as other industrial inspection and maintenance tasks.

The Future

As ever, once the technology and operational rules have been established, the potential for many new drone applications will arise. New markets for drone services are going to open up for service providers, and these will be pioneered by the specialists who have a problem or a project, and can make the link with friends or service providers: it’s the combination of the drone pilot and the corrosion engineer, structural engineer, or another inspection or measurement technologist who needs to get his eyes up close or into a difficult environment that will make the break-throughs.

Published by kind permission of SA Instrumentation & Control, http://www.instrumentation.co.za/default.aspx?pklissueid=1091

Emerson acquires Spectrex

Emerson Process Management has announced the acquisition of Spectrex Inc, a leading US-based manufacturer of flame and open path gas detectors. With this addition, Emerson will have the most comprehensive line of flame, gas and ultrasonic leak detector solutions used for safety monitoring in the industry.

Spectrex will join the Rosemount portfolio of measurement and analytical technologies, joining the capabilities already available with the gas leak detection systems acquired in Groveley Detection (nickdenbow.wordpress.com/2013/06/24/1345/) in June 2013.

For nearly 34 years, Spectrex has been the leader in flame and open path gas detection. It developed the world’s first ultraviolet-infrared (UV/IR) and triple infrared (IR3) flame detectors and was first to introduce xenon flash lamps in open path detector design, increasing detectors’ resilience to atmospheric conditions while reducing power consumption. These innovative advancements in safety monitoring provide a powerful solution for customers in the oil and gas, petrochemical, chemical and power industries.

“We are very excited about adding the Spectrex product line to our flame and gas detection portfolio,” said Tom Moser, group vice president of Emerson Process Management’s measurement and analytical technologies. “Emerson is committed to helping our customers protect their employees, facilities, and the environment, and we are now better positioned to serve that need.”

Spectrex and its staff are located in Cedar Grove, New Jersey, with sales and technical support offices in Houston, the United Kingdom and Taiwan.

Editor’s note: I tried to launch the UK sales of the first UV/IR detection system ever developed (so I was told at the time) which was made by Armtec in New Hampshire. That was in about 1983. Maybe Spectrex bought up Armtec? All inputs will be welcomed!