The new Process Atrato ultrasonic flowmeter

A new flowmeter for small bore liquid flows has been introduced Titan Enterprises, an enterprising British company, who are a long established manufacturer of liquid flowmeter systems. Their first ultrasonic meter was introduced in around 2010, after a long development programme in co-operation with Prof Mike Sanderson at Cranfield University, and was called the Atrato. This unit was launched for the typical markets served by Titan, of laboratory testing, drinks dispensing, cooling systems, pilot plants, fuel cells, pharmaceutical applications and OEMs – and offered a 200:1 turndown, 1% accurate obstructionless straight through meter with a 4-20mA output. Materials were mainly PEEK and borosilicate glass or stainless steel for the flow tube, but the BSP or NPT male fittings were available in stainless steel. A very clever and high performance flowmeter for flows up to 20 Litres/min.

The Launch in 2010

Regrettably, while having worked with Titan for many years prior to 2010 on their PR and promotion, a high flying expensive agency was brought in to promote the Atrato, so it disappeared off my radar. I should not say much about whether it has been seen by anyone else since then, because I don’t have any info: but why are you reading this?

Now a new launch has been announced by Titan, of the Process Atrato flowmeter: a new version of the basic flowmeter, now ‘packaged for the process and control environment’.

The Titan Atrato for the Process Industry


This unit is built from 316 stainless steel and PEEK, plus an elastomer seal to suit the application, and has the on-board electronics sealed to IP65. From the photo you can see that the threads into the stainless steel process connection (at the top of the flowmeter) are female. The lower screw thread is for an M12 four pin electrical connector. The unit is suitable for 65 Celcius and 25 bar process conditions: the non-process Atrato can operate up to 110C if the electronics is installed remotely, so presumably this might be a future development. Flow range covered is 2mL/min to 15 Litres/min, using four flowtube sizes.

Each of the four models covering the different flow ranges is configured to offer the same pre-set ‘K-factor’, which is quoted to assist OEM use and interchangeability: but it also highlights that the electronic output available on these “process units” is a PNP and an alternative NPN pulse train, quoted as a ‘frequency’ output. Presumably this relates back to the pulse output style as was provided by the other Titan turbine and positive displacement flowmeter sensors. A separate power supply, from 8-24VDC, is used to power the unit.

A few criticisms

The other surprise for me was that the meter is pictured, and obviously intended for installation, ‘upside down’, with the electrical connections and housing below the flow line. When this Process Atrato is really an equivalent to a thermal mass style gas flowmeter application, but on liquids, you would think it would be sensible to have it looking similar to these other, well-known gas flow devices. The reason for this cannot be that it needs to allow entrained air to escape, as the flow tube is just a straight tube, with no complicated connections which might trap anything.

For the engineers who can see through these confusion factors, the device is a very effective flowmeter, 200:1 turndown, +/-1% accuracy over 2-100% of range, while working with viscous as well as non-viscous fluids – with the standard Atrato features of linearity, no moving parts and fast response time. Plus the PR says it will offer a ‘reduced cost of ownership’, but does not specify what this is compared with…..surely the point is that there is not much else on offer to provide this performance, except maybe a micro-Coriolis meter.

If Only….

The pity is, ever since launching the Bestobell Doppler flowmeter in 1976, and the Platon Kat in 1998, I’ve been looking forward to being involved in the launch a decent ultrasonic flowmeter for clean liquid process applications…..


The Titan Atrato ultrasonic flowmeter

The new Titan Atrato ultrasonic flowmeter results from many years of co-operative research and development between Cranfield University and industry, and represents a real innovation in its field.

There are not that many innovations, or companies, that manage to stay the long course between identifying the concept and proving the final product. Indeed, the whole idea of a five-year development would seem to make the project impossible, particularly in the UK, where accountants rule the roost.

However, the Process Systems Engineering Group, based in Cranfield’s School of Engineering, has a particular brief to offer research, development and consultancy help to government and industry in the spheres of the oil and gas, water, process and energy industries. The original concept of the flowmeter, using low frequency ultrasound and advanced signal processing, came from the work of Mike Sanderson, Emeritus Professor of Fluid Instrumentation, and his group at Cranfield, and has been the focus of this development project championed by Titan. The Atrato is a good example of industrial co-operation bearing fruit and shows how vital universities and knowledge capital are to our industry – particularly ironic in a period when funding for universities is under heavy threat from government accountants.

The new Titan Atrato uses the well established time-of-flight principle; the main innovation is in the patented sensor arrangement, using two piezo-electric sensors separated along a straight flowtube, meaning that there is an unobstructed straight flow path for the liquid. The ultrasonic crystals are cut into an annular form, and excited across the radius. Effectively the ultrasound travels as a plane wave along the flowing fluid: it does not rely on the normal angled paths across the tube used in conventional ultrasonic flowmeters, or on any reflections from the pipe walls. The meter is therefore able to operate even in small diameter pipes. The plane waves also eliminate any major effects from changes between laminar and turbulent flow in the liquid, making the meter viscosity independent, and capable of a wide dynamic range.

What will be really interesting is to see the new applications that take advantage for the Titan Atrato meter, which might extend to medical and drink dispensing duties, as well as industrial applications and water meters. Prof Sanderson believes that the technology developed for the Atrato has the flexibility to provide the basis of a family of flowmeters suitable for a wide range of flows and applications. First public showing will be at the 2010 MTEC exhibition, at the NEC in April.