Wave energy – UK and South Africa

wave energyBoth the UK and South Africa have the potential for harvesting green energy from the surrounding sea, from ocean or tidal flows, or from wave energy. Some 15 years ago, when the UK Government was keen to encourage and invest in green energy technologies, the European Marine Energy Technology Centre (EMEC) was established in the Orkney Islands, off the north coast of Scotland. The EMEC is the only centre of its kind in the world: it exists to provide developers of both wave and tidal energy converters – technologies that generate electricity by harnessing the power of waves and tidal streams – with purpose-built, accredited open-sea testing facilities. Initial funding of GBP34m came from the UK and Scottish Governments, the Carbon Trust, the European Union and several Scottish local agencies and councils. By 2011 the EMEC had become self-sufficient, by selling its consultancy and site evaluation and testing services to would-be suppliers.

As an aside, becoming self-sufficient was probably very opportune in 2011, as other UK Government financed initiatives and incentives for green technologies, like the Carbon Capture and Storage demonstration project, and financial incentives for wind farms, were switched off very fast as harsh financial strictures were imposed on Government spending. Currently, the CCS demo project in Canada, supported by its national and local Government, Shell Research, and local industry, is performing better than the project expectations.

South African research

According to Professor Wikus van Niekerk, from the Stellenbosch University Centre for Renewable and Sustainable Energy Studies (CRSES), while South Africa has some limited potential for harnessing tidal current energy, particularly at the Knysna Heads and the Langebaan Lagoon, the country’s most promising renewable ocean energy potential lies in ocean currents and waves.

From the technology aspect, wave energy appears to offer the most potential in South Africa. CRSES research shows the Western Cape has the highest wave power generation potential, and a few wave energy projects have been tried. Indeed Stellenbosch University developed the Stellenbosch Wave Energy Converter (SWEC) in the 1980s. As recently as 2015 it appeared the cost of wave energy generation was significantly higher than the solar PV or wind turbine techniques, but cost and technology changes rapidly!

New wave energy devices

Now on test in the Orkneys with EMEC is a 50% scale model of the new Swedish design of the Wave Energy Converter, the C3 from CorPower Ocean. This unit resembles a large ‘skittle’, or long necked bottle. Under test at EMEC since January 2018, the C3 WEC will be connected to a floating Microgrid unit, which is designed to allow the C3 device to behave as if it were grid connected by providing a stable voltage and frequency reference, simulating the impedance of a typical grid connection, absorbing power from the device under test and providing power to auxiliary systems.

This style of the WEC would be aimed at providing off-grid operations to power islands, offshore installations or remote coastal locations, all around the world. Another unit previously tested by the EMEC is the Wello Penguin, designed in Finland. Wello has received its first order for a commercial wave energy park, to be installed next to Nusa Penida Island in Bali, Indonesia: it will be the largest wave energy park globally, with planned delivery at the end of 2018. Power output is 20 MW, using multiple Penguin generators.

The Wello Penguin floats on water and captures kinetic energy from the waves, which is then turned into electrical power. It is an asymmetrical ship, and a 600 kW unit would be 220 tonnes typically, 30 m long and 16 m wide, anchored to the ocean floor. It utilises the same components that are already in use in wind turbines, and is easily constructed in a shipyard, meaning the Penguin is cost competitive compared to offshore wind energy. The roll of the Penguin spins the rotator inside the device, directing the energy from the waves. This rotation drives the generator – it does not have any moving parts in contact with sea water, so the service needs are minimal. In relation to comparative costs, the CEO of Wello, Heikki Paakkinen, said “The cost of energy generated with Wello Penguin is already very competitive compared to offshore wind energy, and in serial production we aim for a further 50% cost reduction.”

wello penguin

In 2015, Blackbird International, in collaboration with WERPO, announced plans to develop a 500 MW wave energy power plant in South Africa. The original wave energy system designed by WERPO, from Israel, uses an anchored float normally installed on wave breakers or sea walls, which rises and falls with wave action.

This article was written for and originally published in the April issue of the South African Instrumentation and Control Journal, published by technews.co.za in South Africa.

Advertisements

Process plant safety hazards – and sensors

The following summary of recent hazardous events was the subject of my column in the May 2018 issue of the South African Instrumentation and Control journal, published by technews.co.za . See the whole issue here.

This March saw the North of Europe suffer with the ‘Beast from the East’, with freezing Siberian wind and rain, plus snow – even in the South of the UK. The high winds brought an unexpected benefit: the power generated by the many UK wind turbines reached 14GW, or 34% of the UK power demand, during several periods. The wind power capacity installed feeding the UK grid is now 19GW, the third highest in Europe: Germany has 56GW, and Spain 23GW.

Cyber attacks in the Middle East

The major concerns for Saudi Arabia are the continuing cyber-attacks.  More information is emerging about the Triton malware attack, reported in this column in February. The latest news, published on the Cyberscoop and CyberArk websites, suggest the Triton attacks failed because of a ‘flaw in the coding of the malware’. Because of the sophisticated nature of the malware, and because many of the coding indicators have not been seen before, or used by any known hacking group, the conclusion is still that extensive resources were involved in creating and testing Triton, which could only have been provided by a nation state actor. Saudi Aramco assisted in the investigations, but say the plant attacked by this virus was not a part of their operations. Triton is confirmed to be specifically targeting the Triconex safety override systems, in an overt attempt to cause catastrophic damage. The Schneider Triconex controllers are used in about 18,000 plants around the world, including nuclear and water treatment facilities, oil and gas refineries, and chemical plants. The reports also revealed that attacks in Saudi Arabia using the Shamoon virus have continued, with Sadara Chemicals and the Saudi National Industrialisation Company (Tasnee) both being attacked last year.

USA, the CSB, and Russian hackers

In the USA, the impression is that major plant incidents fall into three main categories: dust explosions, maintenance welding errors and transport pipeline fractures……

[But here it is necessary to update this “impression” after the later announcement from the US administration  – the Dept of Homeland Security recently reported that Russian hackers had been observed on machines (computers) with access to critical control systems at power plants (both nuclear and conventional). American agencies have been aware of these intrusions/attacks for the past 18 months, and they have screenshots showing the hackers had the foothold needed to manipulate or shut down power plants – both in the US and in Europe, it seems….. Plus it is also linked to the suspected Presidential election meddling.] Returning, however, to dust explosions and welding errors….

The US ten year average for grain dust explosions is 9.3, so actually 2017 was below average with only seven explosions and five fatalities in the USA. The number is steadily declining, as better training and housekeeping take effect, and with the wider use of dust explosion venting and suppression systems.

It is my personal impression that maintenance welding errors seem to be a major cause of the plant and tank explosions reported in the USA, firstly during maintenance under hot work permits, but also in plant changes, when working on tanks where flammable materials were previously stored. Despite this apparent laxity in grain handling and petrochemical plant operations, the US has a world leading accident investigation organisation, the Chemical Safety (and Hazard Investigation) Board. The CSB was established in 1998, and produces brilliant accident analysis reports, covering small hazardous events up to major disasters. They are the people that are responsible for detailing the causes of the major BP Texas City refinery explosions in 2005, and the Macondo blowout in 2010, both of which caused major loss of life. The CSB can only make recommendations for legislative changes, which then have to be considered by OHSA and US State legislative bodies. Perhaps typically, President Trump promised to abolish the CSB when he came to office last March, presumably thinking it was a barrier to free enterprise etc, but thankfully he seems to have changed his mind!

Developments in Sensors

Returning to sensors, and the current development trends, it seems there is no specific focus for developments currently. Perhaps because of the US accidents with pipeline leaks and fractures, there is considerable attention being paid to corrosion and crack monitoring, but the development of point sensors seems to not be relevant for long pipelines. At the University of California San Diego, a new ultrasonic sensor array has been built onto a flat silicone elastomer sheet, which can be wrapped round bends and corners that otherwise are difficult to inspect with flat probes. Initial applications are seen on structural steel in bridges, or for aircraft engine supports.

In Europe, ACHEMA has launched their brochures in advance of the 11-15 June expo in Frankfurt: the last event was in 2015. Focussed on process engineering for chemicals, pharmaceuticals and petrochem, maybe ACHEMA will show the future routes of sensor development – notably however, cyber-security and safety from hazards are not major topics in their agenda!

Plant control systems and the internet

The following is my personal view of the business planning quandary faced by the major automation companies, first expressed in a Comment page published by Technews.co.za in the South African Journal of Instrumentation and Control, SAIC, March 2018 issue:

It is a common saying that the pace of technology change accelerates with time: although possibly as the observers get older, they become set in their ways, and cannot keep up.

This is certainly true, in my experience: I am getting older, set in my ways, and struggle to keep up. However:

It is not only the pace of such changes, but the speed at which the changes are spread across the ‘world market’, that makes new technologies so rapidly applied and, sometimes, profitable. In consumer markets, the effect is most evident, with the spread of mobile phones and mobile computing: possibly this would all not have come to pass without the availability of the Internet fuelling the spread of information. But for automation, and industrial sensors, has the technology change been rapid? I believe it has, and believe it is now accelerating ever faster, taking advantage of the advances made to meet the demands of other users. This has been evident, and mentioned in these columns, in referring to wireless sensors, batteries for self-powered devices, and self-power from solar or vibration or heat energy. There are many more developments that should be included in that list.

The problem for Automation companies

But how are the major sensor and automation companies driving this growth into their businesses using advances in technology: what are they researching? Where are they investing to get a business advantage? I think that their business planners are having a difficult time at the moment.

Around ten years ago, the big new technology coming to the fore was wireless communication from battery powered sensors. The large automation companies, like Emerson and Honeywell, invested heavily into this technology, and there was the inevitable confrontation between two rival systems – WirelessHart and ISA100. The automation marketplace thrives on such confrontations, for example the spat between Foundation Fieldbus and Profibus. It happens in other markets too; think of Blu-Ray and standard DVDs, PAL and NTSC TV systems etc.

Other perceived growth areas

After the wireless investments blossomed, the Internet was looming, and everyone believed they had to take advantage of the data that could be collected, and networked. Certainly Emerson and ABB went heavily into power network control systems, but ABB had major product availability and systems installation capability in the power industry and has made real progress. Emerson eventually sold out of this network power business, but retains the Ovation DCS used for thermal power station control on site.

Automation companies also bought into the long-established, relatively dormant and slow market of condition monitoring systems, by acquiring the companies quoted to be ‘active’ in the field, who had the ‘black art’ knowledge of industrial condition monitoring. Personal experience, back in the ‘70s, has taught me what a hard sell and difficult market even the simpler condition monitors offer, monitoring bearing wear etc, and that hardly suits the major project potential that might be of interest to big contractors. Complex systems, such as those applied to turbines in power stations, did offer potential, but needed real specialist back-up.

Additionally, the people in the business, such as Schaeffler perhaps (once again the product suppliers with the customer base), slowly developed their own bearing monitoring systems, ranging from portable hand-held units to bigger wired/wireless systems – these are the ones that I believe will succeed in this market. An alternative approach adopted was based on wireless technology developments, which needed a central monitoring system, the ultimate goal for the automation guys. Sensors for steam trap monitoring were designed by majors such as Emerson, to expand their plant control systems into condition monitoring for the plant engineers.

Sure enough, after a slower start, steam trap companies such as Anderson (US) and Spirax Sarco (UK) developed their own systems, and had the market entry with the customers using their traps. The opposite approach was adopted by Yokogawa, which is the pioneer of ISA100 industrial wireless systems. They created alliances with people like Bently Nevada, the bearing condition monitoring sensor people, and with Spirax Sarco on steam traps. Maybe this was to be able to reverse sell them the back-up products and technology for wireless systems, or maybe to hope for the potential of a plant monitoring control system supply.

Software systems

Most of the automation majors have alliances with the large software and computing companies, like Cisco and HP. The current approach seems to be to use these alliances to piggy-back a 24/7 plant monitoring system using the Internet, supplied as a service across the world. Again, I believe the companies with the product on the ground, the stuff that needs monitoring, will be the major players. Here it looks like GE, monitoring its own brands of refrigeration compressors, large pumps and gas turbines at power stations and offshore etc. are best placed.

The future

The quandary is where the Internet will help the industrial control systems and sensor suppliers expand their businesses in the future. The answer deduced above is stick to what you know and what you are known for. The irony is that the major with the best potential now is Rockwell Automation, with its systems based around Ethernet communications, interfacing with anything, plus their onsite Ethernet hardware, with control systems already configured to deal with such varied inputs. Maybe this was why Emerson made an abortive take-over offer for Rockwell late last year. The potential has also been seen by Profibus, who are pushing forwards with their Profinet, and where they go, Siemens will always be in the background.

Cybersecurity and Biopharma in Ireland

Cyber-attacks are an inevitable part of modern life, so cyber-security is a major focus for process control and automation systems on plants everywhere, and particularly in the biotechnology and pharmaceutical industry. The ISA in Ireland is organising a one-day conference in Cork in April, to explore the solutions and concerns which uniquely affect control and automation systems used across Ireland today. The conference will also cover automation systems within the manufacturing, transportation and other critical utilities.

ISA Ireland has assembled some of the world leading speakers on this topic including those from some leading Control and Automation suppliers.

SIEMENS – ROCKWELL – EMERSON – YOKOGAWA – ABB

They all agree that the growing threat from cyber-attacks on the control systems running your manufacturing plants and critical infrastructure is not going to go away, and the threats are continually evolving. Such systems that cannot be shut down when under a cyber-attack need extra levels of protection.

This ISA Ireland conference will be held at the Rochestown Park Hotel, in Cork, on 13th April. It is focused on preventing or mitigating the damage that a cyber-attack will have on your control and automation systems. We will highlight the nature of the threat, how your systems and infrastructure can be better protected, and methods used to minimise attacks on your business. The presentations will give you an understanding of how the control system manufacturers are designing protections into the existing and future control system to reduce these threats, and explain practical steps that can be used to design-in safety measures.

Emerson biopharma investment at NIBRT Dublin

Emerson Automation Solutions is providing automation software and Delta distributed control systems valued at USD 1 million to Ireland’s National Institute of Bioprocessing Research and Training (NIBRT) to help train next-generation workers on the latest technologies designed to optimise pharmaceutical production.

Mike Train, executive president of Emerson Automation Solutions, explained “NIBRT is leading the way in helping Ireland, its universities, and Europe meet the demand for the skilled biopharmaceutical manufacturing workforce the industry needs.” This collaboration with NIBRT follows a 2016 NIBRT study of the biopharma manufacturing industry in Ireland that found more than half of respondents have a high degree of difficulty recruiting and developing bioprocess engineers.

The planned Emerson Room at the NIBRT facility will simulate an innovative bioprocessing environment and feature a fully operational DeltaV system to provide real-life training in a safe environment.  Martin Shanahan, CEO of the IDA Ireland, said: “The biopharmaceutical industry is extremely important to Ireland, and is worth over €uro40 billion in annual exports. It is essential that we continue to provide the appropriately skilled workforce capable of operating these state-of-the-art processing plants for many years to come. Emerson’s significant investment will help us support this continuously evolving industry.”

NIBRT and Emerson Picture Conor McCabe Photography

Dominic Carolan of NIBRT; Mike Train of Emerson Automation Solutions; and Martin Shanahan,  of IDA Ireland, at the NIBRT facility in Dublin

Process plants as weapons of war

Malware over the Internet has replaced the large gunboat that was despatched in previous times – say 200 years ago – to send a message to the heart of a rival nation, indicating that relationships were becoming a little frosty. Then submarines and ICBMs were introduced, as less vulnerable to counter-attack – and providing hidden strength to be activated when necessary. The same applies to malware, in that once it is in place the weapon can be hidden and dormant until required. However, with any new missile system or weapon, the routing, targeting and performance of the latest versions have to be tested, and often this testing can be observed and monitored.

For any nation or group with an evil intent against another, this gives a major opportunity to cause chaos or damage to the infrastructure or manufacturing operations of a target country. This was seen in 2010 with Stuxnet, the Malware targeted at Siemens controllers in Iranian nuclear centrifuge installations. The source of the virus (officially) was never traced, but it was thought to have been from Israel, possibly with support from the USA. So Iran saw the effectiveness of this approach, and then developed the Shamoon virus, which caused major damage to all networked PCs at Aramco in Saudi Arabia in 2012. A further variant of Shamoon was unleashed in 2016/17, targeting ordinary computer systems around the Persian Gulf, as well as in Saudi Arabia.

Following these events, many cyber-security service businesses and departments appeared, in addition to those which were developing anti-virus systems to protect computers from hacking by fraudsters and criminals. Both of these types of company monitor any new attacks and intrusions, and normally report that state sponsored hacking is known to have originated from Israel, Iran, Russia, USA, and North Korea. Indeed some of the most active hacking has been from a Russian group known as Sandworm, particularly disrupting networks and systems in the Ukraine starting in 2014. Malware called ‘Industroyer’ was used in 2016 to cause a power blackout in Kiev, by modifying the ABB configuration files in the electricity supply grid network systems.

The latest attack

Two such cyber-security service businesses are FireEye and Dragos, based in the USA. In December 2017 they reported on a new attack (actually seen several months before) delivering malware into an un-named petrochemical plant control system in the Middle East. Others have reported this malware was most likely to have been developed in Iran and targeted at a Saudi Arabian installation. The FireEye investigation team from their Mandiant subsidiary found that the plant safety system, a Triconex SIS, had caused an unexpected safety shut-down. Triconex is a company within Schneider Electric, following their acquisition of the Invensys Group: their triple-redundant safety systems protect major hazardous installations such as petrochemical plants. They also are the ultimate shut-down safety system for many nuclear power plants around the World, including most of those in China.

FireEye called the malware they found “Triton” – it is also known as Trisis. The implication of their report was that the Triton attack framework gained remote access to an SIS engineering workstation, sought out the Triconex controllers, and tried to inject new commands into their operations. It seems that the workstation (on site) was in programme mode at this time, hence opening a potential window. There was no indication that the malware used any vulnerability in the Triconex system or its program code. In fact the triple redundant safety system reacted properly: the new single instruction did not pass the built-in validity checks, and so Triconex shut down the plant operations safely, as is the requirement of such a safety system.

FireEye interprets that this attack, which shows persistence, the lack of any clear monetary goal, and the technical resources necessary to create such an attack framework, as suggesting the origin is a well-resourced ‘nation-state’ actor. Either this current attack is reconnaissance development testing of part of what would need to be a significantly expanded multi-point approach to penetrate and control Triconex, or at a minimum it is designed to be economically disruptive to the target plant. Other commentators have suggested that Triton could prevent the Triconex SIS from carrying out its safety function, and drive the plant to destruction. Whilst this is unlikely, and not supported by current knowledge, the malware is undoubtedly aimed at the safety system, and Triconex is the omnipresent safety system used in most of the hazardous plants across all countries, whatever the origin of the plant control system.

A unique ubiquitous target?

Industrial control systems – for petrochemical plants, nuclear and other power stations, water treatment plants, power grids – are standardised across the World, so that they can accept inputs from equipment from many manufacturers: this is good, because there are no monopolies. It is also bad, because anyone can learn how to access these systems. While there are maybe ten major DCS suppliers worldwide, the SIS supplier base is much smaller – there are two or three suppliers. Of these, Triconex is by far the largest supplier, making them a very tempting target for anyone intent on world domination!

This article was written for and first published in my column in the February 2018 issue of the South African journal of Instrumentation and Control, a magazine from www.technews.co.za

ARC report confirms ABB continuing DCS market dominance

ARC Advisory Group is one of those typically American consultancy organisations that produces reports describing technology trends and competitive analyses that are then sold to the suppliers in the industry. Undoubtedly they are also employed to produce specific reports at the request of single specific clients, but the main reports publicised for public sale are the overall market surveys. Without paying a lot of money, the general public don’t get to see these.

All the data from the reports is generalised, and as ever, subject to interpretation, so hopefully each client can find something that reinforces his optimism about his company’s place in the market. So they are essential sources of backup data for Board presentations and the like.

The ARC DCS market study

The recent ARC report on the “Distributed Control Systems Global Market 2016-2021” report provided ABB with sufficient confidence to issue a Press Release stating that the ARC had confirmed ABB to be the ‘#1 supplier of Distributed Control Systems Globally’, with a 20% market share ‘across industries’, making ABB the leader of ‘digitally enabled control and automation’. This is a continuation of the position they have held according to ARC since 1999.

Peter Terwiesch, President of the ABB Industrial Automation division echoed these findings: “With our installed base of over 70 million connected devices and 70,000 control systems, and an annual investment of $1.5 billion in research and development, ABB is leading the digital transformation of industry.”

Such reports and statistics were the bread and butter, and even the honey, for the reports written for the Industrial Automation Insider newsletter that your editor produced from 2010 to 2015. The focus for such a report would have been that with at most seven major suppliers competing for the top slot, a 20% market share would imply the dominance margin is (still) fairly slim!

The ARC report provides a competitive analysis of the market shares of leading suppliers by geographical region, and broken down into eleven major industry groups, as well as equipment type, project size and style. The ABB release specifically mentions the ABB activity as delivering sustainable progress for power, water and process industries.

The ABB Profile

More interesting in many ways were the specific project examples picked out by ABB as the prime examples of their expertise in several sectors, viz:

“ABB’s leadership in DCS stems from countless ground-breaking projects around the globe. ABB Ability System 800xA plays a key role in securing the success for Sadara, the world’s largest chemicals complex built in a single phase. The monitoring and automating of the entire production process is fully integrated with System 800xA, all coming together in 18 control systems and 260 operator work stations. The integration capabilities also helped the Garpenberg mine to become one of the world’s most cost-effective and modern mines in the world. Hoists, mill drives, ventilation, dewatering, substations, conveyors, crushers, ore storage, and maintenance, as well as document management and communications are seamlessly integrated to the automation system. Very recently Emami Cement has chosen System 800xA to automate its new production plant which will help boost infrastructure growth in India.

“ABB Ability Symphony Plus is, for example, the core solution for integrating new emission control technology at a power plant in Wisconsin, US; for protecting the UNESCO World Heritage site of Venice, Italy from high water by controlling the city’s MOSE flood barrier system; for providing the automation and electrification solution for Adani, the world’s largest solar power plant in a single location, in Kamuthi India; and for enabling the Vietnamese utility Saigon Water Corporation (SAWACO) to control and operate its infrastructure in real time, significantly reducing the amount of non-revenue water.”

Walt Boyes has expanded on this report in the December issue of the Industrial Automation INSIDER, which was published on 11 January 2018.

 

Sales and marketing people to admire

With the Farnborough Air Show coming over the horizon, in 2018, I thought it might be relevant to look again at the story first told in the SA Instrumentation and Control journal in 2016, just after the last Farnborough event.

First, the retail example

There is a family-run DIY shop in Winchester: it does not have the attractive displays of the DIY Supercentres, it is crammed with stuff in crowded aisles, and you have to ask where to look for anything. But then the staff know exactly where it is, are knowledgeable about how to use it, and make a good guess as to why you want it, and suggest two other things that might also be useful. So you come out with more than you wanted, but with reassurance. More important, they made the sale, helped the customer, and sold a few more bits. You have to admire their sales expertise, and their business just keeps on growing. Back in 2016, they proudly boasted that it was Rick Stein’s favourite D-I-Y shop!

A different approach, in industrial calibration

img528 the trescal postcard

The Trescal postcard give-away

Occasionally you recognize similar marketing initiative in industry. In the public display days at the Farnborough Air Show 2016 there were aircraft enthusiasts (like me) lined up along the barriers, all probably with jobs that impinge on aviation, or engineering, or similar. So while waiting all day for his 10 minute display slot, Jean-Marc d’Hulst, the pilot of a French Starduster SA300 aerobatic biplane, walked along the crowd line handing out postcards showing his aircraft, chatting to anyone interested, and listened to by everyone around.

Turning the postcard over you realize that it is advertising the Trescal Group – which explains the name painted on the side of the aeroplane. This group is a world-wide network of companies that provide calibration, repair and verification services, specialising in the requirements of the avionics industry. These days, with traceability and accountability paramount, such services are in high demand, not just from the aerospace industry, and are usually bought in from a third party, so the records can be seen as from independent inspectors, and the third party supplier takes on all the hassle of maintaining the traceability for their test equipment.

IMG_0615 ND pic farnboro

My photo of his display, in a grey Farnboro sky

Jean-Marc d’Hulst is a VP of Trescal: the company news on their website shows they seem to acquire another laboratory in another country every few months. They now have 180 laboratories in 21 countries: these labs cover Europe, Asia, USA, South America and North Africa at the moment. Trescal also provide engineering training and consultancy on measurement problems to improve process performance for all types of industry. Jean-Marc has displayed this year at the Paris, Farnborough, Berlin and Marrakech air shows, and indeed his company expertise was also broadcast during the public commentary at each display. With these marketing skills also applied to the group acquisition and expansion strategy, maybe Jean-Marc will take his Starduster display to South Africa very soon!

2017 Update

While the comment about South African expansion was aimed at the readers of SAIC, the news this November is that Trescal has made another acquisition in South America, Trescal has acquired Teclabor, a calibration services provider based in Recife (Brazil). This is the third acquisition in Brazil, expanding their local geographical coverage into Pernambuco state.

Founded in 1985, Teclabor is an accredited one-stop-shop calibration laboratory, with strong capabilities in liquid flow, volume, mass (scales), temperature and humidity. Teclabor employ 30 people, generating a turnover of 3,3 million Brazilian Reais (approx 1,0 million Euro), and is mainly active in the Food & Beverage sector.

During 2017 Trescal has also acquired several other companies: Gebhardt Instruments in Germany, Acucal Inc in the USA, and Pyrometro Services in Malaysia.