Yokogawa offers ISA100 vibration sensor

Yokogawa Electric Corporation has announced the development and release of an ISA100 field wireless vibration sensor, which combines a fast data update rate with a long battery life. By providing real-time updates of the vibration levels in plant facilities, the new sensor helps users quickly detect equipment anomalies, enabling predictive maintenance.

Development background

With a field wireless system, plant field devices and analysers are able to communicate wirelessly with host-level monitoring and control systems. The rising need to improve productivity and enhance safety by collecting more data on plant operations is driving the demand for field wireless devices, which can be installed even in difficult to access locations. Field wireless devices have the added advantage of reducing installation costs.

Vibration sensors are used for the condition monitoring and predictive maintenance of plant machinery such as compressors, pumps, and motors. Conventional methods for monitoring vibration include the use of vibration sensors that rely on wired communications with a host system, supplemented by patrols by maintenance staff to collect vibration data. Wireless vibration sensors offer the same capabilities, with a much reduced installation cost and improved versatility: plus with the increasing adoption of ISA100 wireless technology across process plants, these sensors are a simple addition to such standard systems.

Since releasing the world’s first ISA100 Wireless-based field wireless devices and wireless systems, Yokogawa has expanded its line-up of field wireless devices that measure temperature, pressure, flow rate, and the like. This new vibration sensor will meet the  customer requirement for a device that can provide the fast updates on vibration levels needed to detect anomalies at an early stage.

Product features

ISA100 Wireless is a technology that is based on the ISA100.11a standard. It includes ISA100.11a-2011 communications, an application layer with process control industry standard objects, device descriptions and capabilities, a gateway interface, infrared provisioning, and a backbone router.

The principal components of this field wireless vibration sensor are the FN510 field wireless multifunction module, the LN01 piezoelectric type acceleration sensor, and the FN110 field wireless communication module. Via a gateway device, the FN510 uses the ISA100 Wireless communications protocol to exchange data with a host-level system such as the existing plant DCS. The data collected with this vibration sensor enables plant operators and maintenance staff to monitor vibration levels in real time. Both standard industrial and explosion-proof/intrinsically safe sensor types are available, with approvals to FM, CSA (cFM), ATEX and IECEx.

yokogawa-isa100-wirelesstm-based-field-wireless-vibration-sensor

The LN01 sensor is the small item at the bottom of the picture, presumably! The box provides the plant mounted protection for the FN510

The LN01 sensor monitors vibration in the frequency range 10Hz to 10kHz, with an update rate of 10 seconds minimum. Measurements are provided of vibration velocity up to 160mm/sec (6″/ sec), and acceleration up to 300m/sec(1 ft/sec/sec). On site the sensor has a cable connection to the FN510 free-standing field wireless multifunction module, the cable is typically up to 10m long. Battery life can be as long as 10 years, if the update rate is set at once per minute.

The Yokogawa approach to field wireless sensors

Yokogawa says they will continue to expand their lineup of ISA100 Wireless transmitters and other devices such as adaptors to develop best-in-class solutions that provide higher value to customers, and promote the use of field wireless technologies.

Their current ISA100 presentation includes their own pressure, temperature and flow sensors, plus other sensors from third parties, for example the Draeger GasSecure flammable gas detector, and the Spirax Sarco STAPS steam trap monitoring system. They have also previously featured products from the Bently Nevada vibration monitoring systems, which also use ISA100 wireless communications: the ISA100 system does permit the frequency spectrum from such devices to be transmitted to dedicated monitoring analysers. The Yokogawa development of the LN01 accelerometer sensor will effectively complement such systems.

(c) ProcessingTalk.info

Emerson to work with Flexim

Emerson Automation Solutions and Flexim, the clamp-on ultrasonic flowmeter specialists, are to collaborate, to help process customers optimise their flow process design, flow meter selection and flow meter installation on capital projects. This will enable them to reduce execution risk and costs.

With customers under severe pressure to reduce schedule and cost targets on capital projects, Emerson project teams, using the Flexim clamp-on, ultrasonic flow metering portfolio in combination with the broader Emerson in-line flow meter products, are able to consult early and throughout the project cycle to reduce engineering, piping and installation costs as well as schedule risk.

Flexim non-intrusive flow meters are the market leaders in clamp-on, ultrasonic technology and provide the best reliability and the most advanced capability when addressing difficult applications with a non-intrusive flow solution. This co-operation will improve delivery of the exact flow solution needed by clients while supporting  ‘Project Certainty’ – the Emerson approach that is said to enable top-quartile performance in capital projects.

By empowering project teams with flow expertise to work with clients early in project phases, Emerson has consistently eliminated cost, accommodated change and reduced complexity on capital projects. The non-intrusive nature of the Flexim ultrasonic flow meters makes this product a powerful contributor to reduced engineering, piping and installation costs as well as schedule risk, given that it can be installed after piping is fabricated. Emerson and Flexim will collaborate to ensure less time is spent on engineering and installation by selecting the optimal flow solution for a given application and applying the most comprehensive flow portfolio available.

“In today’s market, we are seeing that our customers are looking for us to advise them early in their project cycle on technology to ensure streamlined and cost-effective project execution,” said Bret Shanahan, vice president of flow solutions, Emerson Automation Solutions. “We are pleased to be working with Flexim to provide our clients with the most appropriate flow solution that can be applied and support greater capital efficiency.”

“Flexim is excited to partner with Emerson on capital projects; our flexible, world-class, non-invasive meters are a perfect fit with the experienced Emerson project teams,” said Guido Schwanekamp, managing director for sales and marketing at Flexim. “Together we will be able to offer fully customised solutions that are tailor-made for a wide variety of capital projects, reducing capital expenditures while increasing efficiency for our clients and reducing total cost of ownership at the same time.”

BoOM from EU Automation

EU Automation has launched the “Book of Obsolescence Management”, or BoOM for short.

EU Automation stocks and sells obsolete, reconditioned and new industrial automation spares. Its own distribution centers and global network of partner warehouses, enable it to offer a unique service within the automation industry, spanning the entire globe. It provides worldwide express delivery on all products meaning it can supply any part, to any destination, at very short notice.

The company is based in the UK, in Stafford, and does appear to have a different approach to any other supplier. With interviews from suppliers like Renishaw, CopaData, Nexus, Megger and Rochester Electronics, the book gives the seven essential steps for companies looking to start or continue their journey on the road to obsolescence management.



		

	

Noise mapping offshore using wireless sensors

Many of the latest technology developments in relation to offshore oil and gas production installations have emerged from Norwegian research studies, because that industry represents the major part of the economy in Norway.  Such research studies do not only relate to better and more efficient methods of working, but they also investigate the health and safety aspects of the industry: an area of particular concern has been hearing damage to workers offshore, which is the predominant cause of work related illness. At the Yokogawa User Group meeting held in Budapest in May 2016, Simon Carlsen of Statoil ASA in Norway explained the background to a recent project that was undertaken to improve the efficiency of the noise surveillance and monitoring systems Statoil use offshore. This was also presented to a Society of Petroleum Engineers International conference on Health and Safety in Stavanger in April (Ref 1).

picture-3-from-pdf

The main Health & Safety tool used for monitoring noise exposure is the ‘Noise map’, which provides noise level contours within rooms and around machinery where workers are active. These are used to establish a course of action where noise levels exceed allowed limits, whether this action is to reduce or remove the noise source (if possible), insulate the area, issue PPE to workers, and/or impose working time restrictions. Noise maps have historically been based on manual surveys that take single point readings, which are then plotted onto a site map, typically from CAD drawings. Manually taking and plotting these measurements is arduous and time consuming, and typically would be updated only on around a four year cycle. Plus the readings are (obviously) not continuous, only record the conditions when each reading was taken, and generally do not record the added effects from workers using different machinery and tools in the area.

Statoil R&D on wireless & noise instrumentation

Simon Carlsen of Statoil joined the R&D Department in 2006, bringing expertise in wireless instrumentation, and started investigating the feasibility of using wireless sensors and software techniques to create a real-time noise map. The system subsequently commenced became known as WiNoS, for “Wireless Noise Surveillance”, when formally initialised in 2013. This will consist of a network of wireless noise sensors, continuously monitoring the noise in the process area, using sound pressure level (SPL) measurements of four types: A-weighted SPL (I.eqA), C-weighted SPL (I.eqC), peak SPL (I.peak) and thirty one separate third-of-an-octave frequency band measurements from 25Hz to 16kHz. This data is much more comprehensive than the simple noise level measurements used to establish the noise maps, but will superimpose this data onto the historically available maps. These readings can then be used to update the map in real time, and create alarms available to operators.

The WiNoS sensors then use an industry standard wireless network infrastructure, which transmits the data into the control system, where special software produces the updates to the noise maps – typically on a one minute update rate (ie almost continuous). This live information can be used to create alarms to report back to workers in the area, to control their noise exposure. The objective is to reduce work-related hearing damage, by knowing the actual on-site conditions; to optimize operator time working on/near tools, to reduce daily exposure; and to provide instant feedback on the effect of noise reduction measures. In addition WiNoS allows for time synchronized measurements amongst the sensors in the network, and also allows the control room operator to trigger a download of a high resolution frequency spectrum waveform from any sensor of particular interest, to analyse the signature of the noise. This latter is a major part of the future development of the monitoring system, which will feed into plant condition and process performance monitoring studies.

noise-map-3

The WiNoS project development employed the expertise of the Norwegian companies Norsonic AS in the microphone design and the sound level measurements, and the Department of Acoustics at the research company SINTEF to develop the PC software that records the data and creates the noise maps. The software was also required to conform to the Statoil qualified communications protocol.

Choice of wireless network

A major part of the research feasibility study that preceded the WiNoS project was devoted to the choice of the wireless network to be used to efficiently and reliably transmit the data, relatively continuously from multiple sensors. The two suitable networks that were emerging at that time were WirelessHART and ISA100.

The WirelessHART system is now well-known and fairly widely used in Statoil facilities, but the early research trials showed mixed experience with the system and the relevant vendors – some of this was related to the lack of specification details written into the WirelessHART standard. But there were also challenges with achieving the power efficiency in the transfer of all the data required, and the requested large data transfer of the high-res waveform was not readily achievable.

The ISA100.11a wireless transmission standard was also in use in Statoil, and had been adopted for the wireless flammable gas detector pioneered by GasSecure in Norway – Statoil had been involved with the prototype field trials offshore. The initial trials on ISA100 equipment from Yokogawa provided high flexibility for the different application demands, allowed all the 31 one third octave values to be packed into one transmission telegram, and allowed a well-defined block transfer. The sensor could also achieve the two year life required from the installed battery pack, at the 1 minute update rate.

The decision was made that ISA100.11a was to be the preferred protocol for WiNoS, from a technical and project model perspective. Based on the earlier experience of development co-operation with Statoil, it was decided to invite Yokogawa to join the WiNoS project as a Co-Innovation partner, a role that they were keen to develop. In addition to providing the ISA100.11a wireless interface electronics for the sensor, and the interface into the third party control system, Yokogawa worked with Norsonic to develop the mechanical housing for the microphone sensor, and the electronic hardware to process the sound measurements using the Norsonic software, with the whole sensor assembly meeting ATEX requirements.

yta510iaeueth-xx

A Yokogawa wireless temperature transmitter adapted to include the Norsonic microphone

Full system test

In March 2016, a network of 7 off Yokogawa ISA100 enabled wireless noise sensors were tested within the (land-based) industrial lab hall at Statoil Rotvoll, in Trondheim, which has dimensions 35x25x15 metres – and contains various pumps and process equipment. Further synthesized test noise sources were created using loudspeakers. The wireless sensors, the noise mapping software and the IT backhaul architecture all operated reliably and successfully.

winos-system-test

Dynamic noise map generated with the system test

 

A further test, offshore on an operational Statoil platform, is planned and scheduled for Spring 2017, for which Yokogawa will supply 20 production sensors and the ISA100.11a wireless system. A typical platform deck of 50×50 metres might in practice require around 12 noise sensors for effective coverage.

isa100_yta-a-xx

Possibly future noise mapping sensors will be added in high noise plant areas

The Statoil WiNoS system is now ready for development into a commercially available product for use as an offshore platform noise mapping tool. Future research on this system will involve investigation of 3D noise mapping systems. Statoil consider that the equipment application has potential for expansion into machinery condition monitoring, to include automatic process upset or fault and leak detection.

© Nickdenbow, Processingtalk.info, 2016

References

 

Platon/Roxspur acquired by TT Electronics

It’s always interesting when your old company gets taken over, once again! Particularly when you thought it was being screwed up, by the acquirers. So I was disappointed to have missed a news release nearly 15 years later, about a subsequent take-over in 2014.

The event was that Roxspur Measurement & Control was acquired by TT Electronics for GBP8m in July 2014. The good news was that the TT annual report for 2014 suggested that Roxspur provided a GBP0.4m operating profit, included in their results at the end of 2014.

Roxspur was absorbed into the TT Electronics Industrial Sensing and Control division,  which had a sales revenue of GBP61m in 2015, and an operating profit of GBP11.4m. So Roxspur is now a small-ish cog in this much bigger wheel.

TT Electronics describes itself as manufacturing a comprehensive range of temperature, pressure, flow and level products designed for aerospace, industrial, oil and gas, power generation and water management applications through its Roxspur sub-brands Brearley, Platon, Sensit and Nulectrohms. The TT Electronics total sales revenue in 2015 was reported as GBP524m, with an operating profit of GBP30m. So Industrial Sensing and Control is in fact a very significant part of the whole.

I, and everyone else, have to hope that the succession of acquisitions that were imposed on the Platon  variable area glass and metal tube flowmeter measurement business after 1999, have brought some of the employees some benefit.  Over the previous 8 years the Basingstoke based team had built the flow measurement business, which included the well known pre-Internet Flowbits catalogue, into a GBP10m business. So this small part of the corporate group at that time was probably worth more than GBP8m. It faced the biggest business trading profile challenge ever, with the arrival of the Internet, just as it was hyped into a broader paper based catalogue for industrial engineers, renamed as “Controlbits” by the new acquirers.

There are still paper catalogues around, in 2016, but hyped up earnings expectations appeared to kill off the Platon catalogue. The chaos catapulted me, after a year recovering from being made redundant, into a new career, which I do not regret. It also spawned some spin off start-up companies, which have done well. Even the Platon Pension scheme, which had to be the subject of a Government funded rescue, has at last started to pay out some of the pensions due, as from 2015.

So there were benefits! Ironically I did, at that time, and maybe still have, a minimal number of shares in TT Electronics!

 

Radio system for simple temperature sensors

Signatrol, the Tewkesbury (UK) based manufacturer of the SpyDaq wireless temperature and humidity data logging system, has been awarded a UK patent for some of the communications aspects of SpYdaq, that make their system reliable, yet simple and cost efficient for pharma and food industry monitoring.

Initially designed to monitor and record temperature and humidity in buildings and storage areas, SpYdaq enables easy compliance with HACCP, EN12830, FDA CFR21 Part 11 and other relevant standards – where careful inviolate monitoring of storage conditions is required for quality reasons and to comply with legislation.

Unlike other similar systems on the market, SpYdaq features a unique high redundancy data package, specifically designed by Signatrol and it is this that has been recognized by the Patents Office and the award of UK Patent number 2479520.

SpYdaq monitors key parameters and transmits them, via a licence-free radio band, to a base station which then makes the data available via bespoke display and analysis software, using either an Intranet or the Internet. Using sensors linked by radio means that installation is quick and easy. The transmitters ‘sleep’ and then wake up at defined intervals to transmit the data. Using this method means that the transmitters are purely transmitters and not transceivers, thus reducing the cost and complexity of the system.

SpyDaq wireless from Signatrol

SpYdaq base station and sensors: this unit uses mobile phone links to the cloud for data monitoring and recording

A potential problem would arise with this approach when two or more transmitters try to transmit at the same time, and signals collide, resulting in loss of data. Signatrol has developed its unique communication system to ensure that in the event of a collision no data will be lost. In fact, for a fully populated system, the likelihood of losing a single reading is once in every 67 years.

Brian Turner, Managing Director Signatrol commented: “I am pleased that, although it has taken quite some time, our unique and innovative SpYdaq data logging system has finally been recognized with the grant of Patent. Many customers are already benefiting from this system and the patent will give added confidence to new adopters”

Indeed the Signatrol website quotes many well known names in the pharmaceutical and food industries as their customers: these are the major targets for Signatrol. Included are the NHS, AstraZeneca, Pfizer, GSK, and in foods Cadbury, Kellogg’s, Premier Foods and British Sugar.

The base stations can collect data from up to 16 transmitters, which can optionally also receive an external input signal, as well as monitor temperature and humidity. There is no info about the radio system employed, or the operating range, but various base stations offer local or intranet alarm set points, and there is also a unit that transmits data to the Signatrol cloud system for further recording and control actions. The base stations start at around GBP500, and the sensors at GBP130.

(c) ProcessingTalk.info

Ethernet added to Emerson Coriolis meter

J943 coriolisAdditionally, the transmitter incorporates a configurable I/O channel, which can be used as a discrete input or set to a mA, frequency or discrete output. This enables powerful application options with minimal equipment. For example, the discrete input can be used as a totaliser reset, the discrete output can control a valve in conjunction with the integrated batch control software, the frequency output enables a quick connection for proving applications, or the mA output can be used to tie into existing or legacy control systems.

The Ethernet upgrade is available with multiple protocol choices including EtherNet/IP, Modbus TCP, and Profinet.

To speed integration and connection with Ethernet/IP systems, the transmitter contains an EDS (electronic data sheet) file for fast access to instrument information with little to no manual setup. This also enables automatic AOP (add-on profile) generation for quick and powerful system integration. Pre-configured input assemblies allow users to select exactly what is needed from a wealth of information in a Coriolis meter, without burdening the network with unwanted traffic.

“The Micro Motion Model 5700 Coriolis transmitter has delivered proven value and unique differentiation to users. The rugged housing is certified for tough field environments, including extensive hazardous area certifications and approvals. The housing was engineered to provide easy access for installation, mounting, and maintenance,” said Jason Leapley, product manager. “Now, with the option for native Ethernet, users can easily access process information without going out to the instrument.”

ProcessingTalk.info readers will be aware that Endress+Hauser has used Ethernet on their Coriolis meters since the 2011 Rockwell Automation Fair: their unit was launched in about 2010.

(c) ProcessingTalk.info

New ultra-miniature downhole transducer

Over the years you might have read about strain gauge based pressure transducers, and wondered why the major pressure transmitter firms never really went down that simple line for submersible gauge or absolute pressure transmitters. In the UK, Druck created a major business from this technology, and were eventually absorbed into GE, which basically ensured they remained a niche supplier. Another specialist, and niche supplier of such transducers, was Paine Electronics in the US. Originally established in 1951, they moved into strain gauge transducers in around 1968. In 2001 the company was acquired from the original owner, Bill Paine, and moved to Washington: but in 2013 it became employee owned, and proud of that fact.

On the original Paine website it still says “We believe our employees should share in the success of our company in a tangible way”, and this is signed off as “Paine Electronics – an employee owned company”. But with 100+ employees the business was still relatively small, even though it supplied pressure transducers to subsea and satellite/space vehicle applications, as well as to the aerospace industry. So the tangible benefit to employees came fairly quickly, with another change of ownership.

At the end of 2014, in November, Emerson acquired “substantially all of the assets of Paine Electronics”. Reporting into the Emerson Rosemount operation, Paine was seen as “Extending their leadership in providing measurement technologies for the oil and gas industry with expanded upstream capabilities in subsea and downhole drilling operations”. This would also complement the business of a previous Emerson acquisition, Roxar, who supply products used on subsea oil & gas operations. But maybe because it is a small operation, only now do we have some follow-up news, in the shape of a new product release from Emerson, describing a new Paine transducer for downhole pressure and temperature measurement. Size is critical in downhole operations, so this transducer, described as ultra-miniature, has an OD of 0.93cms (or 0.37 inches in US units). It is the Paine 310-38-0050, still labelled like that, and was actually launched on the Paine website back in February 2016.

tx

The Paine 310-38-0050 transducer provides both temperature and pressure measurements in the smallest and most rugged form factor possible. It provides pressure measurements up to 25kpsi (1723 Bar) and withstands and monitors temperatures up to 425F (218C) to cover the wide range of conditions experienced in downhole operating environments, just behind the drill bit. The unit is also built to withstand the corrosive drilling fluids and high vibration levels normal in these applications.

© ProcessingTalk.info

@ProcessingTalk

Emerson shows off their latest instruments

The Emerson European Exchange User Meeting in Brussels in April 2016 presented their approach to large automation projects, ‘Project Certainty’, as the main thrust of the conference and press event associated with the meeting. This approach will be reported separately: this view of the instrumentation developments on show was the topic of my column about this event, published in the SA I&C Journal in June 2016. The story is shown below.

The Emerson European Exchange

DSCN3109

Maybe half the audience for the first Emerson presentations

The Emerson ‘Global User’s Exchange’, for their customers and potential customers in Europe, Middle East and Africa, was held in Brussels in April. As with all the leading Automation, Control and Instrumentation suppliers in the world, Emerson Process Management has developed this style of single company Expo, because it is difficult to present their whole product range and capability in any commercial, third party exhibition: there would not be enough space. Indeed even in their own dedicated display hall, not all their product capability was on show.

The same is true of the presentations and keynote speeches. The Emerson business is so big, based on large automation projects, that these have to be the main focus of the management comments. The fascinating detailed product and technology developments in temperature, analytical or corrosion instrumentation also on show, did not get top billing, but they were there, in the background.

DSCN3147small

I have to declare that I need to understand a product or technology to become enthusiastic about it, and in general I have found instrumentation easier to understand than automation software. Emerson has always put an emphasis on instrumentation, and invested in this by developing or acquiring innovative new techniques and companies in the area – moreso than most of the other majors. Then by adding their own knowledge power, they add interfaces and capability, such as HART and Wireless communications, manufacturing technology, housings and mods for industry-wide approvals. So I am an Emerson fan. But because technology grows, it does become harder to understand the way these instruments actually work! For me, a visit to the Emerson Expo is like opening a treasure chest, filled with ideas and enthusiastic people available to explain their latest kit.

Wireless interfaces link everything

The Emerson dedication to WirelessHART communications with all instrumentation, as a standard option, opens up the possibility of adding modern technology sensors into existing plant and processes without the major hassles of adding new cables.

Emerson 12-3-1550855bRosemount temperature sensors have had a wireless capability from ‘Day 1’ of the wireless era: and various companies made such wireless sensors capable of being clamped or strapped to the outside surface of a pipe, to make them totally non-intrusive, and easily re-positioned. The Rosemount engineers have gone one step further, recognizing the measurement errors possible with an external sensor affected by the environment. They have developed X-well technology, available with a clamp for pipe ODs between 0.5” and 48”, which incorporates a layer of thermal insulation 13mm thick and covering a 12” length of the pipe (this is not shown in the picture). All this helps to bring the temperature sensor measurement closer to the actual pipe contents temperature, but in addition the electronics senses the ambient temperature, and uses a thermal conductivity algorithm to make a further correction, before transmitting the data over the wireless link.

WirelessPressureGaugeSimilarly, Rosemount lateral thinking has applied wireless technology and piezo-resistive pressure measurement to the pressure gauge. This modern design of an ancient instrument replaces the original Bourdon tube measurement element with a modern sensor capsule, which uses the battery power to drive a needle around a 270 degree scale on a 4.5” indicator. Then the WirelessHART connection transmits the actual process pressure to a central monitoring system. This new indicator gauge is much safer than the old design – with two layers of process isolation from the gauge body it can withstand a 150x overpressure, and is much less affected by plant vibration.

Emissions Monitoring

One of the most advanced product ranges demonstrated in Brussels came from Cascade Technologies, of Stirling in Scotland, which was acquired for Rosemount Analytical at the end of 2014. Cascade have developed some clever laser based systems for gas analysis, for example for Continuous Emissions Monitoring (CEM) systems, which allows them to measure for multiple gas types simultaneously. In the words of one of the experts they effectively have up to 9 lasers operating at different frequencies in one analyser, enabling monitoring for a similar number of gas concentrations. Similar systems have been used to monitor up to a total of 20 gases simultaneously. Their enthusiastic engineers were saying that following the Emerson involvement in the company they would be launching four new products this year – in fact the next one of these was reported on here, in a ProcessingTalk.info review, last month!

Enardo_950_w-bracketAnother essential, but older, safety and emissions monitoring product range has been updated by the addition of an Emerson WirelessHART data link. In 2013, Emerson acquired Enardo, a Tulsa-based manufacturer of mechanically operated pressure and vacuum relief valves, which are used to protect storage tanks for oil/gas, petrochemical and pharma plants – Enardo is now part of the Fisher Regulators business. These valves relieve the tank vapour pressure when the tank is filled, or the temperature rises, or allow air to enter as the tank is emptied, preventing any pressure damage to the tank walls. But safety concerns and modern emission regulations require the valve actions to be monitored: and with no existing wiring installed to transmit such signals, the WirelessHART systems provide a simple solution.

Corrosion monitoring

It was way back in 2009 when Emerson acquired Roxar of Norway, who then specialised in systems for monitoring offshore wells and oil pipelines. The technology involved in the Roxar sensors has developed a long way: they don’t just use ultrasonic detectors to measure the sound of sand and grit hitting the pipe walls! The ER corrosion sensors use a probe with a thin, exposed electrical conductor embedded in an insulator, inserted in the pipe wall. Corrosion of this element changes the resistance of the conducting path, which is monitored. Various designs are available, to adjust the sensitivity of the sensor. LPR probes are Linear Polarisation Resistance probes, which are electrochemical, so require the presence of a conductive liquid, like water, to function. The current response achieved when a small (10-20mV) known polarisation is applied between the electrodes exposed to the liquid, gives the corrosion rate, using electrochemical theory. These Roxar sensors with their CorrLog electronics are now available with WirelessHART communications, making them much easier to apply to any pipework area that is considered at risk from corrosion – and for modern plants using different sources and compositions of feedstock, the corrosion rates can vary significantly from one batch to the next.

(c) Processingtalk.info

@ProcessingTalk

Yokogawa Analyser systems integration services

The Yokogawa Analytical instrumentation makes up a significant part of their product range, serving customers in the oil, chemicals, pharmaceuticals, natural gas and power industries. The measurement techniques used in their products include chromatography, laser-based infra-red absorption and Raman spectroscopy, as well as industrial liquid sensors for conductivity and pH monitoring. Typically many of these sensors are installed in on-site laboratories or analyser houses, which can be skid or container type units attached to the process directly or via sample lines.

YokogawaASICenterEurope_02xx

The expertise developed within Yokogawa in the installation of efficient and effective analytical installations led to the establishment of a complete analyser system supply and integration service, to provide a total package of instruments, monitoring housings, sample line interconnections and conditioning systems, ready for site installation. Such services have been operational for some years, operating from bases within the Yokogawa US and Asian business units: now with the launch of a new service in Europe, ASI or Analyser Systems Integration, the same full service will be available to European customers. This makes Yokogawa a true one-stop-shop for ASI at both green-field or brown-field projects of almost any size, thus helping project owners to simplify their supply chains as they need only deal with a single team for all analytical requirements.

ASICenterEuropeinMadrid

The Yokogawa European ASI centre in Madrid

Loek van Eijck, business unit manager, analytical solutions at Yokogawa Europe, said: “We’re very pleased to announce the introduction of Yokogawa Europe’s Analyser System Integration service. This services responds to a growing market demand within the chemical, oil & gas industry, and increasingly in other process industries, to simplify project management of both new installations and renovations. We’ll be working with our own analysers and those of 3rd-party manufacturers, but it makes sense for project owners and primary contractors to deal with a single integrator of analytical systems, and for that integrator to be a supplier of instruments being installed.”

One of the major issues facing project managers is finding a team with the right skills and experience for specialist areas of project implementation. Yokogawa’s ASI service guarantees access to design and implementation engineers with the highest levels of qualification and certification. The highly skilled project management team is fully certified by Project Management Professional (PMP), while the engineering team designs solutions to the explosion-proof standards specified by ATEX, IECEx and all other relevant standards and legislative bodies, making design compliance easier to prove. They are backed up by a professional execution team with more than 150 years of accumulated installation experience.

YokogawaASICenterEurope_01xx

Yokogawa has built a global reputation for quality and innovation, and has now applied this to its ASI service. “We believe this sets our service apart from the competition,” said van Eijck. “Yokogawa has earned its reputation through involvement in some of the industry’s largest and most innovative projects, and is now able to apply this in Europe to ASI projects of almost any size from any process industry requiring highly accurate analytical instrumentation by sharing know-how with other ASI facilities and developing synergy among Yokogawa Group Companies.” This new facility makes Yokogawa a true one-stop-shop for ASI at both green-field or brown-field projects of almost any size, thus helping project owners to simplify their supply chains. The mature European process industry has many aging plants, and these regularly require updates, renovation and modernizationto meet current and new monitoring requirements.

The service provides a full analytical services life cycle from design, fabrication and manufacturing to installation, on-site services and training. Yokogawa ASI also links up to the similar services provided by Yokogawa in its Asian and US divisions providing customers with global coverage – an obvious advantage for international organisations and projects.

The ASI service in Europe is based in Madrid, Spain. Almudena Mier, ASI location manager at Yokogawa, said; “We have created an excellent facility here for the new service which offers a great environment for the team and the projects they will work on. Madrid is well served by transport links to the rest of Europe and beyond, and has access to some great local engineering talent as well as being an attractive place to work for staff and customers who come from elsewhere in Europe.”

(c) ProcessingTalk.info, June 2016

@ProcessingTalk

#PAuto