ABB 1.2 Million Volt Transformer

ABB has developed, manufactured and energized a 1,200-kilovolt (kV) ultra-high-voltage power transformer to support India’s plans to build a 1,200 kV transmission system, supplementing the existing 400 kV and 800 kV transmission grid as demand for electricity increases. The transformer was manufactured and tested at ABB’s state-of-the-art Vadodara facility in India.

Ultrahigh voltage (UHV) 1,200 kV alternating current (AC) power

Ultrahigh voltage (UHV) 1,200 kV alternating current (AC) power transformer installed at Bina site – Level 2

This 1.2 million volt transformer represents the highest alternating current voltage level in the world and is installed at the national test station at Bina, Madhya Pradesh in Central India, as part of a collaborative initiative by the country’s central transmission utility, Power Grid Corporation of India Limited (POWERGRID).

India’s geographic span means that resource-rich generation centers and urban and industrial load centers are often far apart therefore requiring efficient power transmission. Along with the country’s commitment to enhance the contribution of renewables, these factors are driving the development of an ultra-high-voltage transmission infrastructure.

The 1,200kV transmission system will help strengthen the grid and enhance load capacity up to 6,000 megawatts (MW). Transmission at higher voltages enables larger amounts of electricity to be transported across longer distances, while minimizing losses. At the same time, less space is needed for fewer transmission lines, which reduces the environmental impact and overall cost.

“ABB has a pioneering track record in India and this 1,200 kV achievement is another concrete example of our commitment to support the country in the ongoing development of its power infrastructure” said Claudio Facchin, President of ABB’s Power Grids division. “This project also underlines how ABB delivers differentiated value through innovation and customer collaboration, both key elements of our Next Level strategy.”

In addition to the transformer, ABB has also developed a 1,200 kV circuit breaker that was previously commissioned at the test station. This was the first hybrid gas insulated switchgear in the world to be energized at this voltage level. The uniquely designed circuit breaker is safely housed with the disconnector in a tank filled with insulating gas – resulting in a space saving potential of up to 60 percent compared with conventional designs.

Advertisements

New President at Universal Robots

Following their recent (2015) acquisition of Universal Robots A/S of Denmark for US $285m, Teradyne Inc has announced the appointment of a new President to steer the company’s future, leading the growing market for collaborative robots (Cobots). They have named Jürgen von Hollen as President with immediate effect. Von Hollen was most recently the Executive President of the Engineering Solutions Division of Bilfinger SE, which includes their Automation and Controls business in Mannheim, Germany: they are a leading international engineering and services company. In his rôle at Bilfinger, he was responsible for a global staff of nearly 10,000 and annual sales in excess of Euro1billion.

“We’re delighted to have Jürgen leading Universal Robots through this period of explosive growth,” said Teradyne CEO Mark Jagiela. “Jürgen’s experience developing and leading global teams serving a broad range of industrial and commercial customers is tremendously important as we drive the adoption of easy to use, safe, and economical UR Cobots across the globe.”

unnamed“I am excited to join Universal Robots as they work to fundamentally reshape automation across the global economy,” said von Hollen. “The opportunity to lead and expand a high powered organization like UR with such a long term, high growth outlook is very rare and I look forward to working with our worldwide distributors, partners, and customers in the days ahead to realize the full potential of collaborative robots.”

Von Hollen began his career with Daimler-Benz aerospace and held senior management roles at Daimler-Chrysler Services, Deutsche Telecom and Pentair. He will now be based in Odense, Denmark.

Background to UR

Universal Robots is the result of many years of intensive research at Denmark’s successful robot cluster, which is located in Odense, Denmark. The company was co-founded in 2005 by the company’s CTO, Esben Østergaard, who wanted to make robot technology accessible to all by developing small, user-friendly, reasonably priced, flexible industrial robots that are safe to work with and on their own can be used to streamline processes in the industry.

The product portfolio includes the three collaborative robots UR3, UR5 and UR10 named after their payload in kilos. Since the first UR robot launched in December 2008, the company has experienced considerable growth with the user-friendly robots now sold in more than 50 countries worldwide. At just 195 days, the average payback period for UR robots is the fastest in the industry.

The company, now a part of Boston-based Teradyne Inc, is headquartered in Odense and has subsidiaries and regional offices in the USA, Spain, Germany, Singapore, Czech Republic, India, and China. Universal Robots has more than 300 employees worldwide.

Teradyne Inc

Listed on the NYSE, Teradyne is a leading supplier of automation equipment for test and industrial applications. Teradyne Automatic Test Equipment (ATE) is used to test semiconductors, wireless products, data storage and complex electronic systems, which serve consumer, communications, industrial and government customers. Industrial Automation products include Collaborative Robots used by global manufacturing and light industrial customers to improve quality and increase manufacturing efficiency. In 2015, Teradyne had revenue of $1.64 billion and currently employs approximately 4,200 people worldwide.

The Future for the IIOT

Technews in South Africa has recently published their 2016 Industry Guide to the Industrial Internet of Things (IIOT). The whole publication is available on line, despite being a massive 60 page publication, with many and varied articles on this all-pervading topic. This Annual Supplement to the SA Instrumentation and Control magazine draws on example applications from Europe and the USA, as well as from suppliers who provide the technology capability. This industry guide can be downloaded from the SAIC Archives, on http://www.instrumentation.co.za/archives.aspx.

The challenge the Editor, Steven Meyer, gave me, was to comment on the future direction of the ‘Internet of Things’, so inevitably I turned to some of the new gurus of the industry, who seem to be given the label “Futurists”, or “Trendwatchers” – and it is a growing discipline!

What these guys say

The latest trend evident in the presentations at conferences and corporate presentations, such as those organized by automation suppliers like Emerson and Yokogawa, is for a look into the future, and speculation as to what is to come in the next 15 years. Apart from the information about their new products, and new applications of their systems enabling better automation, these conference organizers also now offer a presentation from a “Trend-watcher” or “Futurist”. Inevitably basing their arguments on the way technology has grown, in relation to computing power, mobile phones, and the Internet, these presentations try to explain the IOT, Internet Of Things, of today – to then discuss what the IOT will really provide, and what will be accepted as normal, in ten years’ time.

Richard van Hooijdonk, a ‘Trendwatcher’

For the Yokogawa European conference, their Trendwatcher was Richard van Hooijdonk, from the Netherlands. A well-known Radio lecturer, Richard is also a lecturer at the Nyenrode & Erasmus University (maybe they made a new subject area for him?). Entitled ‘Trends 2030’, his presentation linked the IOT with the growth of robots; with wearable and injected (into the body) electronics; with ‘Big Data’; with 4D printing and with cybercrime.

NARIM Congres 2015 foto: Robert Tjalondo; www.rockinpictures.com 2015

Richard van Hooijdonk, Trendwatcher

Van Hooijdonk backs up what he says with his actions, at least enough to make us stop and think. He has had an RFID code implanted into his arm, which not only establishes his body with an IP address, but provides the access code to the electronic lock on his apartment, so that he is recognized and the door is unlocked when he turns the door knob. The unit also is programmed with the number for his Bitcoin account. While admitting that the injection process was not painless, his whole approach was that such technology will become smaller and cheaper, with future volume application. So the injections will be less painful, at least!

Personal sensors vs robot automation

Probably everyone in the audience understood and could relate to different parts of Richard’s view of the major future developments likely. Certainly I could understand the function of some wearable electronic systems that monitor heart rate, temperature and blood pressure, etc, but lost the plot when this device was also bio-chemically analysing data from an internal pill or pills that circulate around and analyse the blood and other fluids, to look for symptoms or diseases that need treatment, and then automatically call the Doctor!

However I could relate to the emphasis placed on robot automation, which particularly included advanced drones that can now use optical imaging to identify sections of fields or crops which need spraying with insecticide or seeds or fertiliser etc: the drones are self-programmed to fly over the field in a regular search pattern. Automated and self-checking robots for window cleaning, lawnmowers, carpet cleaning and floor polishing, litter picking and hoovering are all about to take over such manual jobs. Robotics will then take over other duties, like planting out seedlings and watering individual pots in garden centres. In the kitchen the fridge will know when it has run out of specific items like eggs, milk and butter, and order them automatically from the grocer, on a schedule.

Relating this to IOT

In terms of automation the IOT offers the interlinking between multiple devices, pieces of home equipment for example: the alarm clock rings, after having consulted your schedule, weather and traffic reports, to decide when you need to be awake: the curtains open, or alternately the lights are switched on, the bath is filled and the coffee pot or kettle switched on to brew a drink. But these actions may not have to be programmed, the devices themselves, and other sensors, will have been fed into a big ‘consequences’ database in the cloud somewhere, that uses pattern recognition to learn repeated sequences, and can then take over and run these sequences automatically. This ‘Big Data’ processing facility, using pattern recognition, creating artificial intelligence that can process all this data, is a necessary adjunct to the simple sensors – we can’t look at all that mass of information ourselves. Such data processing can be seen in a small way already, when the supermarkets collect your purchase pattern information, and use this to predict when you will buy these same goods again: if you don’t buy them when the computer thinks you should, it can send you a reminder, or even a special offer, to tempt you back to the store. Alternatively, look for a price for a flight on-line: suddenly adverts for that flight appear on every web page you access, and alongside your emails that mention keywords like ‘holiday’.

Jack Uldrich, a ‘Futurist’

The Emerson European User Group conference on the other hand, brought Jack Uldrich over from the USA. Jack started life as a naval intelligence officer, and developed an ability to talk American almost as fast as my brain can translate the words being used. He now describes himself as a Futurist, and consults for many major investment groups, plus is a regular guest on CNN and CNBC. In his website (jackuldrich.com) he presents a paper describing the ten ways IOT will “Open up a Future of Opportunity”.

DSCN3125 uldrich at emerson conf.JPG

Jack Uldrich, a Futurist, looking over his own shoulder?

Jack sees the alarm clock wake-up routine quoted above as the simplest use of IOT: a more comprehensive view is that sensors in your pyjamas, mattress, home lighting systems and the kitchen monitor everything from your diet to your sleep pattern, and tell you to modify your behaviour to improve your lifestyle – for example tell you to reduce the caffeine intake after 6pm, and tell your bedroom lights to slowly get brighter as soon as you come out of REM sleep – whatever that is!

I leave you to read the rest of the paper: but Uldrich takes IOT with Big Data as just one of the major triggers for change. The other factors he lists are Social media, robotics, biotechnology, nanotechnology, AI and renewable energy, which will all coalesce to focus on the intelligent automation of our lives.

New opportunities  

Jack Uldrich sees some major business entrepreneurs emerging as a result of the technology changes around us already, identifying Spacex in satellite launchers (the re-useable ones that now land on ocean barges); Tesla new designs of electric cars, and their plans to develop a 0.5 million units a year production facility for the required car batteries by 2020; GE producing 3D printed aero-engine parts (such as turbine blades) by 2020; and Deloitte recently moving into an office building in Amsterdam that can use IOT sensors to automatically reduce energy consumption by 85%. Richard van Hooijdonk also pointed to disruptive new ideas overturning established markets, mentioning Uber in taxi services; BnB in renting holiday houses; Spotify in music; and Netflix in taking over the video rental market digitally.

These Trendwatchers/Futurists do have a place in business. In fact, van Hooijdonk teaches companies how to anticipate and deal with major changes that might disrupt their business, by creating their own internal disruption team. In this way they may avoid the fate of Kodak, Blockbuster, and Proctor & Gamble. There are obviously many profitable careers opening up in presenting trendwatching lectures, some forecasting IOT scenarios for the future.

But what about the IOT?

Gartner, a leading information technology research and advisory company, forecasts that 6.4 Billion ‘things’ will be connected to the Internet by end 2016, up 30% from 2015, and that this number will reach 20 Billion by 2020. These devices will generate a market for service spending of USD235 Billion in 2016, so this spend will be approaching USD1000 Billion worldwide by 2020. Admittedly only around a third of these connections will be in business operations, two thirds will be in consumer areas. But the major market demand will be for services, where businesses employ external providers to design, install and operate their IOT systems. In reality this means processing the information available using Big Data techniques, to allow the client to get on with his own business, yet benefit from new technology. “IOT services are the real driver of value in IOT, and increasing attention is being focused on new services by end-user organisations and vendors,” said Jim Tully, vice president and analyst at Gartner.

So the attention Gartner speaks of can already be seen coming from the major automation suppliers, who are offering 24/7 services to analyse the data available from industrial internet based sensors, or from plant sensors connected over a VPN link via the Internet. The GE, Emerson and Yokogawa companies of this world see their customers using their products, but that these products have far more capability than the customer can absorb, so they need to be the supplier who provides the expansion and development services. Otherwise someone else will jump in and pinch the client’s attention, and the work.

We already have GE supporting their aero-engines with wear and condition monitoring systems, then extending this to their compressors and pumps on LNG liquefaction plants, with teams of GE people monitoring and reporting back to their clients. These teams might only be in three or four places around the world, all linked by the internet, but they can control their maintenance staff on site. These guys are directed to the machine or plant area that needs attention: and the whole contract is no longer measured in man hour charges, but in percentages of the plant output capability, when the equipment availability is maintained above X%. Similarly we see automation companies developing similar contracts, where they use the IOT inputs to enable plant performance improvements, so that a South African plant benefits from operational experience learned from a similarly linked up Canadian plant: and the payment is a proportion of the performance improvement.

There are opportunities also for specialists to develop expertise in their own specific areas, eg for machine manufacturers to link all their own machines worldwide, and be the leaders in offering the most efficient, reliable widget production machinery: but eventually these will be linked into a major supplier of widget production and business services.

The IOT benefit will come from collaboration and learning, matching patterns and experience from knowledge gained elsewhere: it needs AI, which could be ‘artificial intelligence’, or may be ‘Automated Intelligence’ – and it will come from Big Data, from multiple small sensors, interconnections, and collaboration!

Fresh air with Brexit @ProcessingTalk

Having been a silent voter during the run up to the referendum, and appalled by the rubbish pedalled by the Politicians on both sides, I was delighted to discover that despite my reservations about leaving the EU, a small majority of the voting population also agreed that the positive aspects of a Brexit outweighed some inevitable early problems.

Why is there so much worry over the UK from my overseas friends and relations? The UK is one of the original trading nations, dating back to the C15th. The world is now a much smaller place, and all nations seek to trade worldwide. No countries or group of countries put up trading barriers (or walls) to stop trade, so business between the EU and the UK across the board will continue. They would lose more business than we would, by ceasing to carry existing business forwards. Plus all the recent growth in UK exports has come from trade with non-EU countries.

Forty years ago, the Politicians suggested joining the Common market would be great, citing cheap wine etc. Just another bad promise I’m afraid. Plus we joined the Common Market, not the EU, a Federation of States whose unelected bosses dictate that cucumbers and bananas shall be straight, and set the minimum size of strawberries to exclude the better English (and Scottish) ones. My niece asked where I would get my supplies of wine – so I mentioned that we drink only Australian and NZ wine, the wine sold expensively in the UK from France is actually the cheap stuff they would not drink themselves, and presumably normally turn into vinegar.

The French describe the British as a nation of shopkeepers. It is true, but I say we are a nation of independent-minded traders, sometimes also called entrepreneurs.

What about Automation

In the UK, there will be a slowdown of investment, and this will hit what little domestic spend there was on process automation. It is in the food industry where automation is needed most, and the suppliers there are surely used to an unwillingness to invest. Other sensors go into machinery that is exported, and some of that will suffer with a turndown in EU trade. The oil industry is not really investing at the moment, but the lower GBP/USD rate might make our oil industry, with its experience, and our costs more competitive in overseas contracts.

Siemens, who were publicly very much against a Brexit, has announced it will put on hold any further investment in its wind turbine manufacturing plant in Hull, where it has just set up a new factory employing 1000 people, at a cost of GBP310m. Hull voted by one of the largest majorities FOR Brexit. Dong Energy, the biggest investor in UK wind power, said “we don’t believe that UK energy policy is dependent on EU membership”. Maybe the UK can impose a trade barrier that stops Areva sending their reactor to Hinkley Point: already a UK Government advisor has suggested the GBP18Bn investment by EDF would be cancelled by the French. Maybe then we could go for a sensible UK/US solution?

From an editor’s point of view, press releases about major onshore automation investment projects in the EU, by British suppliers, have been very thin on the ground for several years. So what is at risk with a Brexit anyway? For the big multinationals, they deal with these contracts through their local subsidiaries, wherever the work or engineering is carried out. Most project descriptions these days mention interlinked CAD systems using resources from 5 or 6 design centres all around the world, and the work flows electronically through country borders. From India to Aberdeen, Houston, Madrid, Romania, Italy, UK and Egypt. So what will change? The Brexit might subtly boost the likelihood of investment projects in Eire, rather than the UK, which would be good news for Ireland.

Changes to expect

Probably the people feeling the pinch most will be the City Traders and the Banks. The pound will settle to a lower level, enabling us to recover faster, and then it will climb back when compared to the Euro, if not the Dollar. Whether there will be any further effects on the EU, I cannot predict. There is very little likelihood of Scotland or Northern Ireland breaking away from the UK and joining the EU separately (but the last time I said something similar to this, it was to say that “clamp-on ultrasonic flowmeters would never be able to measure steam or gas flow” – judge for yourself).

What I would like to see is an end to the extreme contrast between the lowest and the highest salaries in the UK, possibly starting by eliminating those highly paid banking jobs. Already HSBC is relocating their Euro currency trading operation to Paris. Maybe this will put a lid on the property prices in London, and overseas billionaires will sell their empty apartments. At least we will now stop paying high salaries and higher travel expenses to the ineffectively employed UK MEPs (Members of the European Parliament)!

For another viewpoint….

For a different viewpoint, see Eoin O’Riain’s post on his Read-out.net Instrumentation Signpost blog: https://instrumentsignpost.wordpress.com/2016/06/30/nobody-knows-brexit-pauto-tandm/

Nick Denbow

http://www.Processingtalk.info

Copper ore conveyor system by ABB

ABB is to supply one of the world’s most powerful and complex automated conveyor belt systems for the Chuquicamata Copper Mine in Chile. The belt system will operate at highest levels of availability and efficiency, to deliver copper ore from the underground mine directly to the concentrator plant, which is located 13 km from the mine site.

The final conveyor system will be one of the world’s largest, covering both steep gradients and long distances, with conveyor flights using up to 20 MW of power, and 55 MW used in the total system – the amount of energy typically needed to power 41,000 homes. In the final stage the system will transport over 11,000 tons of material per hour, the same amount that would fill around 158 freight wagon trains.

Conveyor+belt_lores

A conveyor belt similar to this will be used at the Chiqui mine

Major capacity expansion

The order won by ABB is for a complete power and automation solution: the project includes gearless drives, motors, instrumentation and power product supply. The equipment will be custom engineered to on-site requirements, in order to optimally power, control, measure and actuate the conveyor system. The belt power and automation will be fully integrated through the flagship ABB control system, 800xA, combined with the ABB Mining Conveyor Control Program, to ensure optimum power quality and control across the entire system.

Chuquicamata is one of the largest open pit copper mines, and the second deepest open-pit mine in the world: it is located 1,650km north of Santiago, Chile. Popularly known as ‘Chuqui’, the mine has been operating since 1910. It is owned and operated by Codelco, the world’s leading copper producer. A new underground mine is being developed at Chuquicamata to access the ore body situated beneath the present open pit mine. The new mine is scheduled to begin operations in 2019, and will significantly expand the output from the area.

“With mineral deposits becoming increasingly complex and more remote, our power and automation solutions can help customers become more efficient and optimize their operations enabling them to increase efficiency with less maintenance costs” said Roger Bailey, Head of the ABB Process Industries business. “We are delighted to support Codelco in their aim to be the leading copper supplier across the world.”

The gearless drive is key

A key feature of the solution to be provided by ABB is the gearless conveyor drive system. This is a state of the art solution that will meet the extremely high load requirements and the necessary power availability at the site: this would not have been achievable with a conventional drive solution.

This gearless conveyor drive system eliminates the gearbox from the motor, thus significantly reducing the number of main wear parts, resulting in less maintenance and ensuring a longer lifespan of the system. Another advantage is a considerable reduction in the drive system footprint and the amount of instrumentation required.

Power and water for the developing world

In the Journal ‘South African Instrumentation and Control’ I provide a regular column  giving some commentary on the I&C scene as seen from Europe, wherever possible referring to items that could be of relevance to their South African readers. This was the story published in the May 2016 issue.

Some of the products created for the consumers in the developed world have had perhaps surprising benefits in the less well-developed countries too. One example has been the use of mobile phones throughout Africa, enabling the development of a simple banking and payment system.

But there are other engineering developments that are specifically designed for use by people living far from the normal facilities offered in an urban setting, and many universities, philanthropists and aid organisations are active in supporting these ideas. desolenatorOne such development idea from the UK is known as a ‘Desolenator’. This is a portable, solar-powered water purification system, designed to produce clean drinking water, starting from seawater, or polluted groundwater. The device is the size of a flat-screen TV and is equipped with rugged all-terrain wheels to assist transport: it can produce 15 litres of distilled drinking water per day, enough for one family to use for drinking and cooking.

The device uses a solar panel to produce electricity: a thin layer of the water to be treated flows over the photovoltaic surface, absorbing the heat also produced by the sun, and cooling the panels to improve their efficiency. The heated water passes into a boiler, powered by the electrical output from the panel: the steam is condensed to produce distilled water, giving up its latent heat to the incoming water flow. A small drain from the boiler discharges a concentrated dirty liquid stream.

The Desolenator device is claimed to have a life of 20 years, and requires little maintenance: it has recently won two Innovation Award prizes from the UK’s Institute of Engineering Technology.

Further harnessing solar power

Whilst the Desolenator shows one potential application of solar power, making electric power available from such a widely available source is a major objective in both the developed and under-developed world. This is particularly needed in areas without any other source of power at night, when it is dark, which is a slight problem. How can children do their homework, or study anything, without some light?

In the developed world there is a need to store the power generated by wind farms and solar farms, to make it available in periods of high demand, or when the wind or sun are not there. So there is a lot of research into storing large amounts of power. Hopefully some of this might spin-off and make smaller domestic or small village units available soon.

csm_Photoelektrochemie_219a069346At the Technical University of Vienna (TU Wien), current research is following the principles of photochemical cells, as used in nature, where plants absorb sunlight and store this energy chemically. The main problem was that quoted above, in relation to the Desolenator design, that at high temperatures, the efficiency of any current photovoltaic solar cell decreases. While the electrical energy produced by a solar cell can be used in an electrochemical cell to split water into hydrogen and oxygen, the energy efficiency of this process is limited, because of the high temperatures involved.

At TU Wien researchers have now developed new highly specialised materials, which form a photovoltaic that operates at a high temperature (400°C), so concentrated light beams can be used to produce a large energy output: currently achieving 920 mV. These cells use Perovskite metal oxide materials in the photovoltaic, which creates free charge carriers – electrons – that travel into the electrochemical cell. Here they ionise oxygen into negative ions, which can travel through a membrane, separating hydrogen and oxygen. Work continues to increase the power further and produce an industrial prototype, where a hydrogen cell would be used later to produce on-demand electrical power.

Other techniques

More conventional techniques, such as those having banks of rechargeable batteries, and even mechanical flywheel systems, are being installed in areas where short-term interruptions in supplies are common. But the spin-off from such university research will eventually lead to novel ideas to help the less-developed world as well.

Forgemasters in Sheffield is alive and well! @ProcessingTalk #PAuto

The South Yorkshire steel casting specialist Sheffield Forgemasters has beaten Korean competition to secure a GBP1mIllion deal to cast a press frame for a US customer.

This contract is great news for the UK steel industry, when there is so much bad news about the Tata Steel plants around the UK. The Arkansas-based press manufacturer Ajax-Ceco has awarded Forgemasters the contract for the press frame because of the venerable UK firm’s quality of production and its input into the development and design process. Comprising 550 tonnes of steel, the frame will be almost 13m long, 3.5m wide and 3.2m deep.

“Winning the Ajax casting contract against strong overseas competition and harsh market conditions is purely down to our quality and technical manufacturing skills,” commented Forgemasters sales manager Michael Holloway.“We put a considerable body of work into modeling the casting ahead of a visit from the customer and this threw up some design modifications which were beneficial. This, combined with our history of delivering press frames to exacting specifications, including prior castings manufacture work with Ajax, was crucial to securing the work.”

The company will cast the frame from liquid steel; it will take several weeks to cool before it can be lifted from the casting pit, when it will then undergo heat treatments and machining, Holloway said. The finished article will be delivered to the Southwest Steel Processing forging plant in Newport, Arkansas, USA, where it will form part of a plant expansion, by early 2017.